Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические потенциалы атомов и ионов

    Экспериментальные исследования и теоретические расчеты показывают, что атомы большинства химических элементов способны присоединять лишний электрон, превращаясь при этом в электростатически отрицательно заряженные ионы. Такие процессы сопровождаются выделением определенной энергии, которая и называется энергией сродства к электрону. Совершенно так же, как и ионизационный потенциал, энергия сродства к электрону неодинакова у различных атомов. Как правило, она возрастает при увеличении ионизационного потенциала и понижается при его уменьшении отметим вместе с тем, что энергия сродства к электрону обычно возрастает с уменьшением числа свободных, незанятых электронами позиций на энергетическом уровне в частности, энергия сродства к электрону у атома фтора выше, нежели у атома бора, поскольку атом фтора на валентном уровне имеет только одну незанятую позицию, а у атома бора на том же уровне — пять. У атомов благородных газов сродство к электрону отсутствует, поскольку в них электронные слои полностью укомплектованы. [c.20]


    Химические свойства кислорода. Химические свойства кислорода следуют из структуры электронной оболочки атома. Имея во внешнем слое шесть электронов, атом кислорода стремится приобрести еще два электрона, проявляя окислительные свойства. Реакции, в которых кислород проявлял бы восстановительные свойства и переходил в состояние положительного иона, пока неизвестны , что может быть связано с высоким значением ионизационного потенциала. [c.557]

    Помимо величины потенциала ионизации на способность образования химической связи и на ее характер влияет сродство к электрону данного атома. Если внешний электронный уровень в атоме близок к какой-либо устойчивой системе, то этом может захватывать электроны для приобретения большей, устойчивости в виде отрицательно заряженного иона. Например, атом фтора [c.59]

    Однако в отличие от обычных химических реакций в электрохимических процессах энергия активации может существенно изменяться в зависимости от потенциала электрода, как это происходит, например, при поляризации. Рассмотрим изменение потенциальной энергии, происходящее при разряде Н3О+, т. е. на стадии I. Здесь конечным состоянием является адсорбированный атом водорода. Этот атом имеет значительно меньший размер, чем гидратированный протон (ион гидроксония Н3О+). Поэтому равновесное расстояние, на котором атом находится от электрода, мало по сравнению с соответствующим расстоянием для Н3О+. При разряде протон получает от катода электрон и отрывается от Н3О+, а атом водорода адсорбируется на электроде. Такой переход невозможен без преодоления энергетического барьера, разделяющего адсорбированный атом водорода и Н3О+. Вершина барьера соответствует энергии переходного состояния. [c.270]

    Значительно больших успехов в подборе твердых тел с заданными свойствами достигла наука о полупроводниках. Используя представления, впервые высказанные А. Ф. Иоффе [3], о связи электрических, полупроводниковых свойств с ближним порядком расположения ато-> MOB и ионов, который в основном определяется характером химической связи, удалось синтезировать ряд новых ценных полупроводниковых материалов. На конференции представлен доклад Н. А. Горюновой (см. стр. 96 наст, сб.), в котором показано, что полупроводниковые свойства веществ (ширина запрещенной зоны, подвижность) закономерно изменяются с изменением энергетических характеристик (константа электросродства, групповой ионизационный потенциал) атомов, образующих полупроводник. [c.117]


    Потенциал ионизации /р характеризует способность нейтрального атома терять часть своих электронов. Он измеряется энергией, необходимой для отрыва электрона от атома или иона, и количественно характеризует прочность связи данного электрона с атомом. Особенно характерны первые потенциалы ионизации, отвечающие отщеплению первого электрона от нейтрального атома. Чем меньше потенциал ионизации, тем легче атом теряет электрон. Потенциал ионизации химических элементов находится в периодической зависимости от заряда ядра атома. [c.20]

    Ях можно вычислить, зная степени ионности связей М—X (см. табл. I—III приложения или табл. 45, 46, 48 основного текста) и величины их нормальных ковалентных и ионных рефракций (координационные числа лигандов в комплексных соединениях равны 1, и поэтому надо брать нормальные, а не кристаллические рефракции), с помощью кривых рис. 6. Здесь следует только сказать, что ввиду большой жесткости комплексных ионов (многоатомных лигандов) и того обстоятельства, что в их состав входят двух- п трехвалентные элементы, расчет рефракций полярных лигандов МОг, 5СМ следует вести по кривой для N и Р, т. е. более пологой, чем для одноатомных одновалентных лигандов. Собственное значение рефракции аммиака вычисляют следующим образом. Сначала определяется ионность поляризационного взаимодействия металл— аммиак по уравнению (2.78), поскольку нормальная химическая связь между центральным атомом комплекса и ЫНз невозможна (потенциал ионизации аммиака берется по атому азота). Затем находится рефракция атома металла данной степени ионности, которая потом вычитается из рефракции координаты ННз—М—ЫНз. Именно эти полуэмпирические значения рефракций ЫНз и приведены в табл. 116. [c.261]

    Ядерный потенциал имеет обменный характер. Понимание химической связи подразумевает обмен электронами между связанными атомами. Если бы, например, на мишень, содержащую атомы водорода, падал пучок водородных ионов и при этом наблюдалось бы испускание большого числа водородных атомов в направлении падающего пучка ионов, то любой анализ этого явления должен включать процесс передачи электрона водородным атомом водородному иону. Формальный результат состоял бы в том, что водородные ион и атом поменялись координатами. [c.275]

    Экспериментально энергия ионной кристаллической решетки может быть определена по термохимическому циклу (циклу Борна-Габера), включающему атомизацию простых веществ, ионизацию атомов (перенос электрона от атома одного типа к атому другого типа) и образование кристаллической решетки из ионизированного газа. Если известны энергии атомизации, потенциал ионизации, сродство к электрону и теплота образования рассматриваемого вещества из простых веществ, то может быть вычислена энергия кристаллической решетки по термохимическому закону Гесса. Оказалось, что формула (1.74) хорошо описывает энергию образования решеток галогенидов щелочных металлов, несколько хуже — оксидов и галогенидов щелочноземельных металлов и значительно хуже — сульфидов, селенидов, соединений металлов в высоких степенях окисления и т.д. Это, очевидно, связано с тем, что химическая связь в этих веществах не является полностью ионной. Отклонение от ионной модели может быть следствием поляризаций (смещения электронной плотности) анионов с относительно рыхлыми электронными оболочками под действием катионов с достаточно высокой плотностью заряда (т. е. может происходить перенос части электронной плотности от аниона обратно к катиону). [c.80]

    Бериллий. Особенности бериллия. В нормальном состоянии оба валентных электрона бериллия находятся в состоянии 2 . При химическом взаимодействии атом бериллия возбуждается и один из 2, -электронов промотиру-ет на 2р-орбиталь. Появление одного электрона на кайносимметричной 2р-орби-тали определяет специфические особенности химии бериллия. Бериллий может проявлять максимальную ковалентность, равную 4 две связи по обменному механизму и д ве — по донорно-акцепторному. Первый потенциал и0низащ1и бериллия наибольший не только среди элементов ПА-группы, но больше /1 лития и бора. Для химии водных растворов бериллия аномально большое значение ионного потенциала играет особую роль Ве — 58,5 Mg2 — 27,3 Са — 19,2 8г2+ — 16,6 Ва2+ — 15,0. Наконец, бериллий проявляет диагональную аналогию с алюминием в большей мере, чем литий с магнием. [c.315]

    Перемещивание электролита, повышение температуры и про чие факторы, облегчающие подачу вещества к электроду, по вышают пр и снижают концентрационную поляризацию. р] Собственно электрохимической поляризацией называется смещение потенциала электрода, обусловленное только замедленностью протекания самого электрохимического процесса. Замедленность связана с тем, что электрохимическая реакция, как и всякая другая химическая реакция, требует определенной энергии активации. Наиболее высокие значения электрохимической поляризации наблюдаются при выделении газов. Возникновение перенапряжения при выделении водорода обычно связывают с замедленностью какой-либо одной или неск ольких стадий этого процесса 1) разряд иона водорода H- -f Ме-Ь - МеН (Ме — металл, МеН — атом водорода, хемосорбирован-ный на металле) 2) рекомбинация адсорбированных атамов 2МеН- Нг-Ь2 Ме 3)- электрохимическая десорбция H+-fMeH-f + e - H2-f Ме. [c.264]


    Потенциал ионизации, характеризующий энергию удаления электрона от атома (с образованием положительного иона), и сродство к электрону, характеризующее энергию присоединения электрона к атому (с. образованием атрицательного иона) у углерода и азота отличаются весьма существенно. Г отенциалы ионизации первого порядка (отрыв первого электрона) для атомов углерода и азота равны соответственно И,26 и 14,53 эв, сродство к электрону 2—1,24 и 0,05 эв. Исходя из значений потенциалов ионизации, сродства к электрону и других физико-химических характеристик была рассчитана 3 относительная электроотрицатель НОСТЬ атомов углерода и азота,. равная соответственно 2,6 и 3,0 (т. е. атом азота является более электроотрицательным). [c.9]

    I группы или щелочных металлов Li, Na, К, Rb, s, (Fr), атом которых обладает единственным электроном на s-орбитали уровня, следующего за восьмиэлектронным уровнем атома инертного газа (в отличие от Си, Ag, Au). Химия этих элементов является наиболее простой по сравнению с химией элементов любой другой группы. Здесь также сходство между первым членом группы и родственными элементами значительно больше, хотя исключительно небольшие размеры атома и иона лития приводят к некоторым заметным отличиям в химических свойствах, которые будут подробнее рассмотрены в дальнейшем. Низкий потенциал ионизации (5,39 эе) обусловливает легкое образование иона Li , который существует как таковой в кристаллических солях, например Li l. В растворах ион сильно сольватирован, и в водном растворе его можно представить в виде Li (aq). Литий образует ковалентные связи Li — X. Вблизи точки кипения пар металла лития преимущественно одноатомен, но содержит около 1"/о двухатомных молекул Lig. Такие молекулы были обнаружены по характерному полосатому спектру. Несмотря на то что в первом приближении можно считать, что связь Li — Li обусловлена s—s-нерекрыванием, более подробное изучение свидетельствует о том, что имеется некоторая s—р-гибридизация, Б результате которой связь приобретает на 14 /о р-характер. Энергия связи Li —Li (27 ккал моль) довольно низка, а межатомное расстояние Li — Li равно 2,67 А. Существуют соединения лития, подобные gHgLi и gH-Li, которые проявляют свойства типичных ковалентных соединений, будучи довольно летучими и растворимыми в неполярных растворителях. В настоящее время не только не известны другие степени окисления лития, отличные от -fL но их нельзя ожидать вследствие того, что Li" обладает конфигурацией [c.57]

    Как отмечалось в 2 этой главы, каждое вещество при заданных условиях существует в определенном фазовом состоянии, при котором изобарно-изотермический потенциал системы (как совокупности всех химических частиц, составляющих данное вещество) имеет минимальное значение. Вещество переходит из газового в жидкое состояние, если при этом величина уменьшения энтальпии преобладает над величиной уменьшения энтропии. Необходимым условием перехода вещества в конденсированное состояние является установление связей между его отдельными частицами (молекулами или атомами), в результате чего внутренняя энергия системы становится меньше. Поэтому обратный переход вещества в газообразное состояние требует затраты энергии на разрыв связей между его частицами. Если энергии атомных связей имеют значения от 100 до 800 кДж/моль, энергии ионных связей 400—800 кДж/моль и энергии металлических связей 100— 200 кДж/г-атом, то энергия самых прочных межмолекулярных связей— водородных — составляет от 20 до 40 кДж/моль, а энергия ван-дер-ваальсова взаимодействия не превышает 10 кДж/моль. Поэтому при нормальном давлении молекулярные вещества кипят при низких температурах (табл. 12). В области более высоких температур (100—300°С) лежат точки кипения веществ, молекулы которых образуют Н-связи (аммиак, вода и др.) или являются многоатомными. [c.117]

    Для металлов группы железа зависимость адсорбции органических вещ еств от потенциала менее ярко выражена Это обстоятельство, возможно, в некоторыз случаях объясняется тем, что часть молекул органического вещества, адсорбирующегося на поверхности металла под действием электростатических сил и сил Ван-дер-Ваальса, вступает в более прочную химическую связь с поверхностными атомами металла. Скорость этого перехода зависят от природы металла, природы органического вещества и потенциала, при котором изучается адсорбция. Энергия адсорбции молекул или ионов, вступивших в химическую связь с металлом, выше, чем энергия адсорбции молекул воды. Хемосорбция органических веществ на металлах переходной У1П-ой группы таблицы Менделеева объясняется тем, что атомы этих металлов имеют незаполненную электронами -оболочку. Органические ионы или молекулы со свободной парой электронов передают эту пару электронов атому металла для заполнения -оболочки. Предполагается, что только одна пара электронов может участвовать в такой связи. [c.193]


Смотреть страницы где упоминается термин Химические потенциалы атомов и ионов: [c.6]    [c.383]    [c.137]    [c.60]    [c.103]   
Смотреть главы в:

Физическая химия твердого тела -> Химические потенциалы атомов и ионов




ПОИСК





Смотрите так же термины и статьи:

Атом атом потенциалы

Ионный потенциал

Потенциал химическии

Потенциал химический

Химическая ионная

Химический потенция



© 2025 chem21.info Реклама на сайте