Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Десорбция электрохимическая

    Для оценки степени чистоты электролита устанавливают на ртутном электроде потенциал десорбции п. а. в. на время протекания процесса десорбции (электрохимическая очистка поверхности). Затем устанавливают потенциал максимальной адсорбции примесей (потенциал нулевого заряда ртути) и при нем определяют изменение от времени /((). После этого, используя экспериментальную зависимость — t, рассчитывают концентрацию примесей в растворе по уравнению [c.122]


    Аналогично если понимать десорбцию электрохимически [реакция (А )1 и если реакции (А) и (А ) необратимы, то кинетическое уравнение для выделения Ог снова приобретает ту же самую форму, что и уравнение (1), хотя и с другой константой скорости, а возможно, и с другим (/-эффектом. Нетрудно показать, что схема [c.342]

    Реакция катодного выделения водорода также относится к числу сложных многостадийных процессов. На ртутном электроде скорость выделения водорода определяется скоростью разряда ионов водорода, а удаление Н д , происходит через быструю стадию электрохимической десорбции (реакция Гейровского)  [c.344]

    Независимо от того, происходит разряд в кислой или в щелочной среде, его непосредственным продуктом будут адсорбированные электродом атомы водорода . Для стационарного протекания электролиза необходимо поддерживать постоянной поверхностную концентрацию атомов водорода, т. е. обеспечивать их непрерывный отвод с поверхности катода. Атомы водорода могут удаляться тремя путями каталитической рекомбинацией, электрохимической десорбцией и эмиссией. При каталитическом механизме отвод атомов водорода происходит за счет их рекомбинации в молекулы с одновременной десорбцией  [c.403]

    При электрохимическом выделении водорода удаление его адсорбированных атомов может совершаться несколькими способами. Если эта стадия (стадия III в приведенной схеме) является замедленной, то скорость всего процесса должна определяться скоростью наиболее эффективного из указанных выше трех механизмов десорбции. Замедленная рекомбинация, например, означает, что каталитическое образование молекул водорода отличается большим торможением, чем разряд или стадия транспортировки, и в то же время совершается заметно быстрее, чем электрохимическая десорбция или эмиссия водородных атомов. При близких значениях [c.404]

    Тип механизма Разряд Рекомбинация Электрохимическая десорбция Отвод растворенного водорода [c.406]

    При большой затрудненности реакции рекомбинации водородных атомов (528) и электрохимической десорбции (529) увеличивается возможность растворения Нзд . в металле и последующей диффузии водорода в глубь металла (см. рис. 174), что часто приводит к появлению водородной хрупкости металла. [c.259]

    Оба возможных варианта разряда ионов водорода (либо молекул воды) — на свободной поверхности катода и па адсорбированных атомах водорода — уже рассматривались в предыдущей главе. Здесь следует подчеркнуть, что во втором случае одновременно с актом переноса заряда происходит снятие адсорбированного атома водорода и его удаление в виде молекулы этот процесс называется поэтому электрохимической десорбцией, а вызванное его [c.406]


    Представление о том, что электрохимическая десорбция может определять скорость катодного выделения водорода, было сформулировано впервые Гейровским в 1925 г. [c.407]

    Если использовать экспериментальные данные о степени заполнения поверхности адсорбированными атомами водорода, то можно сделать достаточно вероятные предположения о том, каким путем преимущественно соверщается отвод адсорбированных водородных атомов. Скорость разряда на адатомах водорода (электрохимическая адсорбция) зависит от поверхностной концентрации водородных атомов в первой степени, а скорость рекомбинации — во второй. Поэтому на металлах, слабо адсорбирующих водород, удаление его с поверхности должно осуществляться главным образом за счет электрохимической десорбции. Наоборот, с поверхности металлов, обладающих высокой адсорбционной способностью по отношению к атомам водорода, наиболее эффективным будет их отвод путем каталитической рекомбинации (Фрумкин). [c.413]

    Представление о том, что на ртути выделение водорода совершается по механизму Фольмера — Гейровского (замедленный разряд с последующей электрохимической десорбцией водородных атомов), разделяется в настоящее время большинством электрохимиков. Необходимо, однако, отметить, что по Кобозеву, который отрицает возможность замедленного протекания разряда, перенапряжение водорода на ртути является результатом избыточной энергии свободных атомов водорода, эмитируемых с ее поверхности. Эмиссия свободных водородных атомов (— это, по Н. И. Кобозеву, наиболее эффективный путь отвода атомов водорода с по- [c.413]

    Влияние природы металла на перенапряжение представляет собой сложный вопрос, не всегда решающийся теорией замедленного разряда. Иногда целесообразно рассматривать в качестве лимитирующих другие стадии процесса выделения водорода. В настоящее время предполагается, что для Hg, Т1, РЬ, Zn, Sn, d и др. перенапряжение определяется медленно протекающей стадией разряда. Удаление адсорбированного водорода происходит за счет быстрой стадии электрохимической десорбции. На металлах группы платины и, возможно, железа наиболее медленной стадией является стадия рекомбинации атомов и молекулу. При этом перенапряжение соответствует перенапряжению реакции и описывается уравнением (185.1). [c.513]

    При малых плотностях тока разряд анионов идет на наиболее активных участках поверхности и разложение комплексов завершается десорбцией СО. С повышением плотности тока разряд ионов распространяется и на менее активные или уже занятые кислородными комплексами участки поверхности и завершается электрохимической десорбцией СО2. При выключении тока на электродах электролизера возникает обратная э. д. с. [c.491]

    Значительное перенапряжение при выделении водорода связывают с замедленным протеканием либо стадии разряда, либо стадии рекомбинации. Предложены также механизмы электрохимической десорбции н эмиссионного удаления адсорбированных атолюв водорода. [c.140]

    Гетерогенными называют процессы, в которых реагирующие вещества находятся в различных фазах или образуют новые фазы. Примеры гетерогенных процессов превращение кристаллических модификаций разложение твердых веществ конденсация испарение возгонка кристаллизация из растворов экстрагирование адсорбция на твердых и жидких поверхностях катализ на твердых поверхностях десорбция растворение (абсорбция) газов в жидкостях растворение твердых тел в жидкостях электрохимические процессы и др. [c.276]

    Механизм Фольмера — Тафеля отвечает тому случаю, когда замедленно протекает разряд, а отвод образовавшихся атомов водорода осуществляется их рекомбинацией. По механизму Фольмера— Гейровского, замедленной стадией по-прежнему будет разряд, но удаление атомов водорода происходит путем их электрохимической десорбции. По механизму Тафеля — Гориучи, рекомбинация водородных атомов определяет скорость всего процесса и в то же время обеспечивает отвод атомов водорода, образующихся в результате разряда, протекающего без торможений. В основе механизма Гейровского — Гориучи лежит предположение, что скорость определяется стадией электрохимической десорбции, являющейся одно- [c.405]

    Безбарьерный разряд можно наблюдать при электрохимическом выделении водорода на ртутном электроде. Безбарьерный разряд для этой реакции оказывается возможным, если существует достаточно быстрый путь удаления Над,,, например, по уравнению реакции Надс+НзО +б - На+НзО, получившей название электрохимической десорбции, Безактивационная электрохимическая десорбция [c.242]

    В щелочных растворах, а также в определенных условиях и в кислых растворах электрохимическая десорбция может протекать с участием молекул воды  [c.344]


    Однако в зависимости от величины энергии связи адсорбированного водорода с поверхностью металла и от величины поляризации электрода катодное выделение водорода может протекать и по другим механизмам. Так, в определенных условиях лимитирующей может оказаться реакция электрохимической десорбции (И) или (Па)  [c.344]

    На некоторых металлах в определенном интервале перенапряжений возможен адсорбционно-электрохимический механизм, первой стадией которого является быстрая адсорбция молекул водорода из раствора на поверхности электрода, а затем происходит реакция электрохимической десорбции  [c.344]

    При обсуждении закономерностей многостадийных процессов предполагалось, что заполнение поверхности промежуточными продуктами реакции мало и его можно не учитывать. Анализ реакции катодного выделения водорода на различных металлах указывает на необходимость учета заполнения поверхности адсорбированным водородом. Это приводит к существенному усложнению кинетических соотношений. Рассмотрим уравнения для процесса удаления по механизму электрохимической десорбции [реакции (I) и (П)1. [c.345]

    Теорию Гейровского в дaльнeйшe существенно развил Гориучи с сотр. (1936). Согласно Гориучи, процесс электрохимической десорбции водорода при электролизе растворов кислот совершается следующим образом. Первой стадией является разряд гидроксо-ниевого иона и образование атома водорода, адсорбированного металлом Н—М  [c.407]

    Поэтому для скоростей стадий разряда и электрохимической десорбции 3 получаем следующие соотношения  [c.345]

    Описание электрохимических свойств углеродных материалов включает анализ строения двойного электрического слоя, процессов электросорбции и десорбции электрохимически активных газов (прежде всего водорода и кислорода), редокс-превра-щений поверхностных функциональных групп, а также рассмотрение коррозионного поведения углеродных материалов в растворах электролитов. В ряде случаев эти вопросы столь тесно связаны между собой, что их разделение может быть только условным. [c.68]

    Впоследствии близкие взгляды были высказаны и другими исследователями, например Конвеем и Бокрисом, Впджем, Трассати и др. Этими и некоторыми другими авторами была отмечена необходимость учета конкурентной адсорбции воды и водорода. Свободная энергия адсорбции воды точно неизвестна по ориентировочным подсчетам Бокриса она для металлов первой группы близка к 100 кДж-моль . Выяснилось также, что для ряда металлов, адсорбирующих водород, перенапряжение не уменьшается, а растет с увеличением энергии связи М—Н (Рютчи, Делахей, Парсонс). Эти металлы образуют подгруппу второй группы, по классификации Антропова, в которой преобладающим оказывается эффект увеличения энергии активации рекомбинации или электрохимической десорбции с ростом эшфгии связи М—Н. Минимальное [c.412]

    ЦИИ заменяется стадией электрохимической десорбции какой из этих вариантов реализуется или будет ирео бладающим, зависит от конкретных условий электролиза. [c.294]

    В этом комплексе частицы Н и Н+, располагаясь симметрично относительно оси связи между молекуло воды и металлом (Н2О—М), образуют молекулярный ион Н2+, связанный одновременно с поверхностью металла и с молекулой воды. Связь с металлом обеспечивается за счет валентного электрона, связь с молекулой воды — за счет результативного положительного заряда иона. Переходный комплекс может появиться и без предварительного акта разряда и образования адсорбированного атома водорода. Для этого необходимо, чтобы один из двух ближайших адсорбированных понов водорода приобрел электрон. Электрохимическая десорбция, по Гориучи, таким образом, не обязательно должна проходить через разряд гидроксониевого иона на поверхности металла, уже частично покрытой атомами водорода. [c.407]

    Различие в адсорбционной активности участков поверхности и природе связи между адсорбентом и ад-сорбатом подтверждается, например, тем, что при достижении потенциала десорбции не все предварительно адсорбированные частицы ингибитора удаляются с поверхности. В зависимости от степени заполнения частицами ингибитора поверхности металла изменяется строение двойного слоя, а следовательно, и кинетика электрохимических реакций, т. е. может тормозиться стадия разряда или диффузли реагирующих частиц или предшествующая разряду стадия проникновения этих частиц через адсорбированный слой молекул ингибитора. [c.92]

    С меньщей уверенностью можно сделать заключение о природе процесса на других металлах второй электрохимической группы — свинце, цинке, кадмии и таллии. Больщинство экспериментальных данных свидетельствует о замедленном протекании разряда с последующей электрохимической десорбцией атомов водорода. Заметное повышение перенапряжения Еюдорода при переходе от положительно заряженной поверхности к поверхности, заряженной отрицательно, наблюдается на свинце, кадмии и таллии и связано с перестройкой двойного слоя, приводящей к десорбции анионов и прекращению их активирующего действия на разряд положительно заряженных гидроксониевых ионов Н3О+ (см. рис. 19.1). Если -бы скорость выделения водорода определялась не разрядом, а другой стадией, например рекомбинацией, то изменение структуры двойного слоя не могло бы вызвать такого изменения водородного перенапряжения. [c.414]

    Атомы Н, вероятно, в гидрати )ованном состоянии диффундируют к электроду и могут принимать участие в электродном процессе. Таким образом, применение лазерной импульсной техники дает возможность изучать непосредственно электрохимическую десорбцию, исключив осложняющее влияние стадии переноса заряда. [c.416]

    Аналогично можно показать, что потенц 1алы десорбции в случае кадмия и свинца будут одинаковы (—1,5 В). Таким е образом можно найти и потенциалы начала адсорбции, иными словами, положительные потенциалы десорбции. Установив тем самым область Г-потепциалов, внутри которых вероятна адсорбция данного соединения на различных металлах, можно предсказать, что способно ли это соединение влиять на конкретный электрохимический процесс, протекающий при известном значении электродного потенциала. [c.470]

    По данным И. Л. Розенфельда и Л. И. Антропова, катодная поляризация металла от внешнего источника тока может существенно изменить скорость его коррозии в результате десорбции анионов или адсорбции катионов, которые повышают поляризацию катодного процесса, особенно резко при переходе потенциала нулевого заряда данного металла. Таким образом, катодная поляризация повышает эффективность катионных ингибиторных добавок, а эти добавки могут повысить эффективность катодной электрохимической защиты металлов, снижая значение необходимого защитного тока. Так, защитный ток для железа в 1-н. Н2804 в присутствии 0,1 г/л трибензиламина (СдНбСН2)зК уменьшается в 14 раз. При катодной поляризации замедляющее действие могут оказывать такие катионные добавки, которые обычно не являются ингибиторами коррозии. [c.366]

    Известно [11. 12], что экспериментальными критериями, определяющими механизм катодного выделения водорода в неингибированных и ингибированных кислых коррозионных средах, являются величины производных йЕк- арН и olg i ./iTpH, которые характеризуют зависимость кинетических параметров реакции от pH среды. Основные особенности механизма выделения водорода подробно проанализированы в [13, 14, 15] и представлены в табл.1. Для теории замедленной электрохимической десорбции при достаточно высоких перенапряжениях значения кинетических параметров реакции не отличаются от та-ковых лля тсорнн замедленного разряда [2 . [c.181]


Смотреть страницы где упоминается термин Десорбция электрохимическая: [c.404]    [c.407]    [c.414]    [c.419]    [c.424]    [c.250]    [c.512]    [c.298]    [c.512]    [c.330]    [c.345]   
Водород свойства, получение, хранение, транспортирование, применение (1989) -- [ c.295 ]

Теоретическая электрохимия Издание 3 (1975) -- [ c.429 , c.436 ]

Химия германия (1967) -- [ c.280 ]

Электрохимия органических соединений (1968) -- [ c.387 , c.389 ]




ПОИСК





Смотрите так же термины и статьи:

Десорбция



© 2025 chem21.info Реклама на сайте