Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы на границе субстрат — покрытие

    Особое внимание уделяется изучению вторичных процессов, ведущих к образованию переходных слоев на границах субстрат—покрытие. Выявлены различные, встречающиеся в практике механизмы образования переходных слоев — электрохими- [c.16]

    Процессы на границе субстрат — покрытие [c.241]

    Отвердевание пленкообразующего при формировании покрытия происходит в результате одного из трех процессов а) охлаждения полимерного расплава, б) испарения летучих растворителей или дисперсионной среды, в) химической реакции с образованием сшитой структуры. В процессе отвердевания изменяется энергия смачивания и возникают напряжения на границе контакта. Эти изменения носят релаксационный характер. Поэтому необходимо сохранить максимальную поверхность контакта, исключив по возможности внутренние напряжения как на границе адгезив — субстрат, так и в самом адгезиве. [c.63]


    Различают физические и химические источники паров, формирующих покрытие. Паровая фаза образуется либо при сублимации твердых и испарении жидких источников, либо в результате химических газовых реакций пиролиза, гидролиза, взаимодействия с восстановителями, диспропорционирования. Пар из химических источников образуется в тех случаях, когда химические реакции протекают в объеме газовой фазы. Если реакции проходят на границе раздела субстрат — газ, то механизм процесса становится иным. В соответствии с классификацией, описанной в работе [47], следует различать парофазовый и газовый методы получения диффузионных покрытий. [c.48]

    По современным данным, переходные слои формируются в ре зультате различных форм взаимодействия покрытия с основой, представляющих вторичные процессы, которые, как и первичные, ускоряются путем повышения температуры и с помощью активаторов. Сущность взаимодействия покрытия с основой зависит в немалой степени от активатора. Взаимодействие может иметь химический, электрохимический и физический характер. Активаторы сцепления могут вступать в химические реакции на границе ТЖ, отлагаться электрохимически или диффундировать из покрытия в субстрат и обратно, образуя растворы. [c.211]

    ВИИ высоких температур. Показано, что в зависимости от природы модифицирующих компонентов, возможно формирование регулярных структур, обеспечивающих получение покрытий с заданными характеристиками (твёрдость, влагопоглощение, вязкость и другие свойства).Оптимизированы составы композиционных материалов на основе аминоформальдегидных олигомеров и хлорированных полимеров модифицированных четвертичными аммониевыми основаниями, алкилсульфонатами, карбоксиметилцел-люлозой и фосфатами аммония. Исследованы процессы межфазного взаимодействия на границе раздела модифицированное связующее - наполнитель. Показано, что введение в состав композиции модифицирующих добавок приводит к увеличению адсорбционного взаимодействия и смачивания и улучшает комплекс технологических и эксплуатационных характеристик. Исследовано влияние высоких температур на огнезащитные свойства разработанных материалов. Установлено, что наибольший коэффициент вспучивания и наилучшие огнезащитные свойства имеют композиционные материалы, содержащие в качестве основных компонентов - аминоальдегидный олигомер и поливи-нилацетат, а в качестве вспучивающих систем - фосфаты аммония и уротропин - хлор-сульфированный полиэтилен, модифицированный хлорпарафинами, а в качестве вспучивающих компонентов - полифосфат аммония и пентаэритрид. Разработаны технологические процессы получения огнезащитных материалов. Получены покрытия на субстратах различной природы (дерево, металл, кабельные покрытия) и разработана технология их нанесения. Проведен комплекс натурных испытаний при действии открытого пламени. Установлено, что огнезащитные материаты на основе реакционноспособных олигомеров могут быть успешно использованы для защиты металлов, при этом коэффициент вспучивания достигает 10-20 кратного увеличения толщины покрытия при эффективности огнезащиты - 0,5 часа. Состав на основе хлорсульфированного полиэтилена успешно прошёл испытания в качестве огнезащитного покрытия кабельных изделий. [c.91]


    Наложение барьерных слоев. Встречная, а также односторонняя диффузия элементов через границу покрытие —субстрат — основной процесс, приводящий к разрушению (рассасыванию) диффузионных покрытий при службе в условиях высоких температур. Как уже указывалось на нескольких примерах (см. стр. 245), замедлить этот процесс можно с помощью барьерных слоев. Поиск эффективных барьерных слоев — одно из ведущих направлений дальнейших исследований. Правила синтеза барьерных слоев еще мало выяснены. Помимо тугоплавких металлов, таких как тантал, или инертных металлов, таких как медь и серебро, перспективны комбинации элементов, которые образуют между собой жаростойкие соединения. Лучший эффект должны обеспечивать слои, имеющие другую природу химических связей, чем покрытие и защищаемый материал 410]. [c.271]

    Высокая вязкость эфиров целлюлозы определяет их использование в качестве загустителей и защитных коллоидов в воднодисперсионных клеях на основе поливинилацетата, бутадиен-стирольных каучуков и др. Иногда их применяют в качестве эмульгаторов эмульсионной полимеризации винилацетата и других клеящих полимеров, добавляют к цементным и известковым строительным растворам. В последнем случае они благодаря высокой водоудерживающей способности замедляют всасывание воды субстратом (кирпичом, бетоном и т. п.). Это благоприятно сказывается на условиях формирования границы раздела адгезионного соединения, поскольку вследствие более длительного сохранения подвижности раствора реологические процессы в щве или покрытии протекают более полно, а гидратация связующего происходит в начальный период на больщую глубину и в более благоприятных условиях. В результате развитие остаточных напряжений на границе раздела соединения замедляется и снижается, что обусловливает более высокие эксплуатационные показатели изделия. Кроме того, повыщенная пластичность таких строительных растворов улучшает технологические характеристики композиций. В соединениях, полученных на строительных растворах, эфиры целлюлозы, имеющие достаточно большую молекулярную массу и большое число полярных функциональных групп, повышают когезионную и адгезионную прочность клеевых швов, штукатурных покрытий и т. д. Благодаря хорошим клеящим свойствам эфиры целлюлозы используются так же, как связующие при изготовлении моделей для литья в керамическом производстве их вводят в бумажную массу при изготовлении бумаги, применяются при шлихтовании в текстильной промышленности и т. д. В качестве загустителя их добавляют и к клеям на основе водорастворимых смол, например карбамидных, при изготовлении фанеры и склеивании массивной древесины. Для достижения одинаковых значений механической прочности бумаги требуется в 2,5—3,5 раза меньше КМЦ (какпроклеивающего агента), чем крахмала, причем максимальная прочность достигается при использовании 3,5 %-ных растворов эфиров целлюлозы с вязкостью 5,0 Па-с [25]. Для мелования бумаги применяют композиции, состоящие из КМЦ и латексов, улучшающие водоудерживающую способность и качество покрытия бумаги. [c.25]

    К настоящему времени проведено достаточно много независимых исследований, свидетельствующих, что в клеевом шве, полимерном покрытии, матрице композиционных материалов характеристики полимерной прослойки существенно различаются по толщине. Слои, непосредственно прилегающие к субстрату, так называемые пограничные слои, по ряду свойств как физико-химических, так и механических отличаются от средней части полимерной прослойки. В этом разделе сделана попытка систематизировать эти данные с тем, чтобы при изложении методов расчета использование способов, основанных на учете специфических свойств пограничных слоев, опиралось на экспериментальную базу. Поверхность субстрата может изменять состав или структуру пограничных слоев полимера. Изменение состава мол ет происходить из-за различия сродства компонентов адгезива (смолы, растворителя, отвердителя и др.) к субстрату. Структура клея, покрытия и т. п. на границе раздела может меняться в силу ориентирующего, энтропийного или энергетического действия субстрата. Все эти процессы протекают в основном до тех пор, пока компоненты адгезива сохраняют большую подвижность, т. е. до гелеобразования и отверждения при уходе растворителей, поликонденсации и др. В процессе отверждения полимерных прослоек в них возникают остаточные напряжения как при уходе растворителя или химической [c.82]

    Наконец, следует сказать, что известная диффузионная теория адгезии основана на размывании границы раздела. Имеются прямые доказательства того, что изменение надмолекулярной структуры полимера в зависимости от расстояния от границы раздела субстрат — полимер отражается на величине остаточных напряжений. Характерно, что распределение остаточных напряжений сложным образом связано с микротвердостью [118]. В работе [118] исследовали тонкие покрытия полиэтилена низкой плотности на монокристаллическом кремнии (после отслаивания пленки от субстрата) путем гравиметрии в процессе травления кислородной плазмой ири температуре до 50 и послойного определения микротвердости при малых нагрузках. [c.86]


    Анализ показывает, что изменение свойств адгезионных соединений при длительной эксплуатации в значительном числе случаев происходит не из-за химической деструкции полимера, а вследствие физической усталости, вызванной действием температурных и влажностных напряжений, которые концентрируются на границе адгезив — субстрат. Вероятность снижения физи-ко-механических характеристик адгезионных соединений из-за химической деструкции или усталости определяется комплексом факторов, включающим структуру полимера, условия эксплуатации, характер адгезионного взаимодействия и др. Химические процессы, очевидно, более вероятны при прочих равных условиях для лакокрасочных покрытий, на которые воздействуют солнечное излучение, влага и т. п. Однако в этом случае доступность адгезионных связей действию агрессивных факторов зависит от проницаемости лакокрасочной пленки, ее толщины и т. д. Для большинства клеевых соединений и волокнистых композитов характерны процессы физической усталости [26]. [c.234]

    При ирнменении каучука СКН трещиностойкость снижается, так как с повышением скорости отверждения концентрация дисперсной фазы каучука в объеме и на границе с субстратом снижается вплоть до нуля. Известно [130], что в таких композициях образование дискретных частиц каучука из термодинамически стабильного раствора каучука в эпоксидной смоле происходит по иуклеационному механизму через зарождение новой фазы и ее рост. Это определяется скоростью отверждения эпоксидного олигомера. Если скорость этого процесса велика, то выделение дисперсной фазы и ее рост ограничиваются. С уменьшением толщины пленки покрытия снижается сегментальная подвижность, что проявляется в температурном положении максимума механических потерь Гм- Об этом можно судить по рнс. 4.5—4.7 [131], на которых приведены данные для консольно закрепленных образцов эпоксидный полимер — медная фольга — эпоксидный полимер. Чем меньше толщина слоя полимера, тем ниже Т (см. рис. 4.5), причем при толщине менее 10 мк.м максимум потерь разделяется на два (рис. 4.6). Сошлифовывание верхнего слоя покрытия изменяет соотношение максимумов, причем низкотемпературный максимум при [c.91]

    В этой связи важно, во-первых, экспериментальное установление обратимого и необратимого снижения адгезии в сэндвичевых системах выше и ниже температуры стеклования полимеров и вывод авторов [398, 399] о динамическом абсорбцион-но-десорбционном характере адгезии указанных полимеров выше Гг,. Это, по-видимому, общая особенность всех полимерных элементов многослойных систем, связанная с их физическим состоянием и подвижностью звеньев макромолекул выше и ниже Гс [400—402]. Во-вторых, экспериментальные исследования совместной адсорбции дибутилфталата и воды на силикагеле и летучих ингибиторов коррозии (бензоаты амина) и воды на железе. Авторы работ [403, 404] приходят к выводу о частичном снижении заполнения поверхности субстрата водой в присутствии низкомолекулярных органических соединений, подавлении поли-молекулярной конденсации и образованию на поверхности субстрата микрогетерогенной системы, состоящей из островков воды и органического вещества. В системах с полимерным адгезивом процессы обмена протекают, вероятно, более сложным образом, однако эти различия имеют скорее количественный, чем качественный характер. Об этом косвенно свидетельствует сходство форм изотерм конкурентной адсорбции и изотерм изменения Лоо, оо. Количественные различия проявляются в степени сдвига участков интенсивного изменения параметров в область средних и высоких относительных влажностей. Отметим, что в [398] изменение прочности адгезионной связи при р/рз) р/рв)кр связывалось с адсорбционным замещением макромолекул молекулами воды на поверхности металла при заполнении второго и следующих адсорбционных слоев. В свете этих работ становятся более понятными результаты исследований по кинетике коррозии. Так, вывод о том, что скорость коррозии металла под покрытием в начальный период эксплуатации является функцией прочности связи элементов сэндвичевой системы означает, что увеличение адгезии уменьшает концентрацию коррозионноактивных центров на поверхности металла, доступных агрессивным компонентам среды, и, по-видимому, концентрацию молекул агрессивного компонента около этих центров. Об этом же свидетельствует предварительное модифицирование границы раздела или полимерного слоя, которое приводит к общему увеличению А и значительному возрастанию промежутков времени, [c.270]


Смотреть главы в:

Температуроустойчивые неорганические покрытия -> Процессы на границе субстрат — покрытие




ПОИСК





Смотрите так же термины и статьи:

Субстрат



© 2025 chem21.info Реклама на сайте