Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние внешнего электрического поля. Влияние дисперсности

    В 1808 г. профессор Московского университета Ф, Ф. Рейсс впервые установил факт движения частичек дисперсной фазы и дисперсионной среды под влиянием внешнего электрического поля. Эти работы легли в основу изучения электрокинетических свойств коллоидно-дисперсных систем. [c.279]

    Рейсс наблюдал также движение жидкости в капиллярно-пористых телах под влиянием внешнего электрического поля. В его опытах капиллярно-пористым телом был кварцевый песок, находящийся в нижней части и-образной трубки и заполненный водой. При пропускании через систему электрического постоянного тока в колене трубки с отрицательным электродом вода поднималась до определенного уровня, а в другом колене уровень воды снижался (рис. 77), Если рассматривать кварцевый песок как неподвижную дисперсную фазу, то значит, что под действием электрического поля в данном случае перемещается дисперсионная среда. Движение жидкой дисперсионной среды в электрическом поле получило название электроосмоса. [c.195]


    На границе двух фаз — коллоидной частицы и среды обычно возникает двойной электрический слой в результате перехода ионов из дисперсной фазы в дисперсионную среду или наоборот. Первое явление имеет место в случае диссоциации поверхностных молекул частицы, когда один из ионов переходит в жидкую фазу, в то время как ион другого знака остается в твердой фазе. Второй случай имеет место, когда двойной электрический слой образуется в результате избирательной адсорбции одного из ионов раствора, большей частью входящего в состав или изоморфного с ионами твердой фазы. В результате процессов диссоциации или адсорбции одна фаза заряжается положительно, другая отрицательно. При наложении внешнего электрического поля происходит движение каждой из фаз к противоположно заряженным электродам. Явления относительного движения фаз вдоль поверхности раздела под влиянием внешнего электрического поля или приводящие к появлению электрического поля называются электрокинетическими явлениями. Движение свободных частиц дисперсной фазы в дисперсионной среде под влиянием внешнего электрического поля называется электрофорезом. Электрофорез можно проводить в золях, эмульсиях, суспензиях. Движение дисперсионной среды жидкости относительно неподвижной твер- [c.254]

    Среднее время т жизни флуктуаций концентрации в столь малых элементах объема, очевидно, должно зависеть от скорости диффузии. Оно не может быть меньше среднего времени, требующегося для перескока молекулы нз одного положения равновесия в другое. Экспериментальные данные показывают, что среднее время, проходящее между скачками молекулы из одного места в другое (соседнее), при Т = 300 К для низкомолекулярных жидкостей равно 10" — 10 с. Следовательно, даже для флуктуаций в объемах порядка 10 мл, т. е. микрофлуктуаций концентрации, условие (VII. 6) соблюдается. Следовательно, может наблюдаться заметное влияние микрофлуктуаций концентрации на термодинамические свойства вещества. Время, требующееся для поляризации низкомолекулярных маловязких жидкостей при наложении внешнего поля, обычно не превышает 10" с. Поэтому, когда раствор с развитыми флуктуациями концентрации находится в электрическом поле, его поляризация, а следовательно, и диэлектрическая проницаемость ведут себя так, как если бы раствор представлял собой обычную дисперсную систему с неоднородностями очень малых размеров. Диэлектрическая проницаемость такой системы уменьшается. Автором показано, что уменьшение диэлектрической проницаемости Де зависит от статистического среднего квадрата микрофлуктуаций концентрации  [c.155]


    Существуют два разных типа движения частиц и молекул — регулярное и хаотичное. Первое возникает при действии на частицы некоторой внешней силы. Чаще всего это сила тяжести. Под влиянием этой силы возникает оседание частиц. Регулярное движение может быть также вызвано действием центробежной силы, действием электрического поля на заряженные частицы, действием переменного ускорения при вибрировании сосуда с дисперсной системой и силами другой природы. Важно, что величина и направление перемещения частиц в каждый последующий момент времени предсказуемы с любой желаемой степенью детализации. Основной характеристикой регулярного движения частиц является их скорость. [c.636]

    Изучению поведения эмульсий в электрическом поле посвящена монография [372]. Необходимо отметить, что причиной разрушения эмульсий и пен под действием внешней разности потенциалов является не только электрический пробой жидких пленок, разделяющих отдельные микрообъекты. Значительное влияние оказывают силы притяжения дипольной природы, действующие между частицами и возникающие благодаря эффектам поляризации двойного ионного слоя, а также материала дисперсной фазы [373]. Прим. ред.) [c.123]

    Исследованиями Б. В. Дерягина и С. С. Духина [18, 23] показано, что ионно-электростатическое поле частиц возникает не только за счет избыточных поверхностных дискретных зарядов и ненарушенного двойного электрического слоя, но и благодаря деформации его под влиянием внешнего поля или конвективного движения жидкости при этом возникает электрическое поле, радиус действия которого на несколько порядков выше, чем при термодинамическом равновесии системы. При разноименных потенциалах твердой поверхности или одноименных, но различ ных по величине возникают электроповерхностные силы притяжения между молекулами и частицами. Благодаря суммарному действию всех сил электрической природы толщина аномальных водных слоев в дисперсных системах может достигать сотен и даже тысяч ангстрем. [c.15]

    Явление движения дисперсных частиц под влиянием электрического поля называется электрофорезом, а явление движения жидкости через пористое твердое тело при наложении внешней разности потенциалов — электроосмосом. [c.329]

    Кроме того, широко используют моделирование дисперсных систем, а также внешние силовые поля (электрические, магнитные, ультраакустические), оказывающие обычно сильное влияние на структурообразование. [c.102]

    Полученное таким образом соотношение, называемое уравнением Гельмгольца—Смолуховского, связывает скорость относительного смещения фаз под действием внешнего поля с некоторой разностью потенциалов в двойном электрическом слое Аф. Для понимания природы этой величины и влияния на нее характера фаз перейдем к более полному рассмотрению условий образования и строения двойных электрических слоев на границах раздела дисперсной фазы и дисперсионной среды. Заметим, однако, что излагаемая далее принципиальная схема строения двойного слоя не может полностью количественно описать всю совокупность различных процессов на поверхностях раздела фаз. Ряд важных деталей теории строения двойных электрических слоев подробно рассматривается в курсах электрохимии. Ниже приводятся те основные сведения, которые необходимы для анализа электрокинетических явлений и устойчивости дисперсных систем. [c.176]

    Исследованию поведения эмульсий во внешнем электрическом поле посвящено много работ, что в значительной степени обусловлено важным практическим значением вопросов обезвоживания нефтяных эмульсий и очистки воды, содержащей примеси минеральных масел [314, 315, 333—336]. Поведение жидких капель в электрическом поле довольно сложно деформированные внешним полем капли при одних режимах воздействия могут диспергироваться, при других — коалесцировать. Строгое количественное описание взаимодействия таких капель представляет собой очень сложную задачу, особенно в том случае, когда эмульсии стабилизованы ПАВ. Необходимо отметить, что в большинстве работ, в которых рассмотрено взаимодействие микрообъектов в электрическом поле, не учитывались эффекты деформации и поляризации ДЭС. К сожалению, метод количественного описания притяжения дипольных частиц без учета параметров ДЭС, развитый Красин — Эргеном [337], нередко используется и в настоящее время. Мут [338] еще в 1927 г. объяснял образование цепочек из дисперсных частиц, находящихся в электрическом поле, поляризацией (сдвигом зарядов) частиц и их ионных слоев. Аналогично Германе [126], как было отмечено ранее, указывал на важную роль деформации ДЭС в процессах коагуляции. В дальнейшем Штауф [127] разработал приближенный метод расчета энергии притяжения наведенных диполей, учитывающий поляризацию ионных слоев, и определил зависимость величины энергии притяжения от напряженности и частоты внешнего поля, а также от размера частиц. В работе [128] исследовано влияние переменных и постоянных электрических полей на взаимодействие частиц латекса политрифторхлорэтилена и сополимера стирола с ни-трилакриловой кислотой, диспергированных в алифатических [c.69]


    Электрокинетичеекие явления, наблюдаемые в дисперсных системах, представляют собой либо относительное смещение фаз под влиянием внешнего электрического поля (электроосмос, электрофорез), либо возникновение разности потенциалов в направлении 07Носнтельного движения фаз, вызываемого гидродинамическими силами (потенциал течения, потенциал седиментации). [c.70]

    Теория неравновесных поверхностных сил диффузионной природы, развитая Б. В. Дерягиным и С. С. Духиным, имеет существенное значение при рассмотрении закономерностей электрокинетических явлений и взаимодействия поляризованных частиц. Учет диффузии и поляризации двойного слоя позволил Б. В. Дерягину и С. С. Духину предсказать новое явление, родственное электрофорезу, — иффузиофорез, заключающееся в движении дисперсных частиц при отсутствии внешного электрического поля под влиянием только перепада концентрации ионов. [c.197]

    Обычно, исходя из методических соображений, изложение теории электрокинетических явлений начинают с анализа скорости взаимного смещения фаз под действием внешнего электрического поля в дальнейшем на этой основе могут рассматриваться и все остальные электрокинетические явления. При этом нужно учитывать геометрические особенности системы, в частности соотношение размеров частиц дисперс ной фазы, расстояния между ними и толщшюй ионной атмосферы. Кроме того, наличие частиц дисперсной фазы может ока 1ывать влияние на характер расположения силовых линий внешнего электрического поля в дисперсной системе. [c.230]

    Влияние электрохимических процессов на электрофоретическое осаждение частиц на электроды из суспензий подробно рассмотрено Коелмансом [399]. Однако нельзя не принимать во внимание, что при наложении внешнего электрического поля в объеме дисперсной системы вследствие поляризационного взаимодействия частиц происходит их коагуляция [366]. Следовательно, на электроде осаждаются, как правило, не отдельные микрообъекты, а цепочечные агрегаты, ориентированные рдол(> силовых линий поля [400], Прим. ред.) [c.135]

    Новые возможности для получения подобной более ценной информации о ДС дисперсных частиц возникают нри измерении как электрофоретической так и диффузиофоретической подвижности одних и тех же объектов. Диффу-зиофорез, т. е. движение частиц под влиянием заданного извне градиента концентрации в отсутствие внешнего электрического поля, первоначально был открыт в неэлектролитах [111. Затем было показано [12], что в электролитах диффузиофорез обусловлен поля-ризацией ДС под влиянием перепада [c.104]

    Даже при нормальных условиях эксплуатации в хорошо оборудованных лабораториях окружающая среда оказывает влияние на точность взвешивания. Вследствие колебаний температуры, влажности и давления воздуха происходит уход нулевой точки весов, в результате сорбционных процессов на границе газ — твердое тело изменяется масса груза и гирь. Взвешивание образцов с неоднородной или дисперсной структурой сопровождается влагообменом между навеской, тиглем и деталя.ми весов [6]. На весы, груз и гири влияют внешние маг-г нтные и электрические поля, в том числе магнитное поле Зем- [c.79]

    Поляризация ионных слоев, наступающая вследствие деформации и релаксации ионных атмосфер, вызывает появление дальнодействующих сил дипольной природы, ЧТО приводит к появлению цепочечных агрегатов во внешнем электрическом поле. Основываясь на работах по структурообразованию в электрическом поле [191], И. С. Лавров [192] предположил, что при электрофорезе в объеме ванны образуются цепочки и структуры, которые понижают устойчивость системы. Это подтверждает возможность влияния процессов поляризации на выход осадка и устойчивость дисперсных систем в электрическом поле. В работах по изучению механизма электрофоретического образования осадков, проводимых в ЛТР1 им. Ленсовета, учитывается коллективное взаимодействие частиц, возможность их фиксации на дальних расстояниях, вскрыты различия в механизме образования осадка из агрегативно устойчивых и неустойчивых дисперсий. Этими исследованиями установлена также возможность получения покрытий из многокомпонентных систем, дублирующих состав исходной системы и показано, что увеличение -потенциала способствует повышению выхода осадка в отсутствие поляризации частиц. [c.88]

    B.А. Панов и Ж.А. Кравченко [10] сформулировали предположение об активирующем (по В.И. Классену) действии зародышей газовой фазы, образующихся на поверхности извлекаемых частиц за счет вьщеления газа из пересыщенного раствора, возникающего благодаря высокой дисперсности пузырьков. И.С. Лавров с сотрудниками [11] считают, что существенное влияние на эффективность электрофлотации оказывает внешнее электрическое поле. [c.256]

    Из электростатики известно, что под влиянием поля диполи приобретают преимущ,ественную ориентацию. ИДМ дисперсной частицы не может быть в этом отношении исключением. При анизо-метричности частицы воздействие внешнего поля ориентирует ее длинной осью вдоль поля. При иной ориентации воздействие поля на ИДМ порождает пару сил, под действием которой частица вращается, приближаясь к устойчивой ориентации. Этот электро-ориентационный эффект порождает электрооптические явления. Электрооптическими явлениями называются изменения оптических свойств дисперсной системы под влиянием электрического поля. [c.226]

    Если поверхность дисперсной фазы несет заряд одного знака, то при наложении электрического поля в концентрированных системах происходит электросинерезис, т. е. сжатие структурного каркаса у одного из электродов и выделение дисперсионной среды у другого. Это иллюстрируется приводимыми на рис. 1 микрофотографиями Са-смазки (солидол), сделанными в поляризационном свете. На рис. а показан вид застывшей ориентированной в потоке структуры. Быстрая остановка потока смазок сопровождается практически мгновенной цементацией структуры, содержащейся в потоке. В случае аиизодиаметричных частиц легко образуются застывшие ориентированные структуры, которые не изменяются со временем. Если частицы обладают собственным двойным лучепреломлением, то в застывших потоках наблюдается значительный поляризацнон 1о-оптический эффект. Эта замечательная особенность смазок позволяет изучать изменения структуры под влиянием различных внешних факторов. При наложении электрического поля наблюдается картина, показанная на рис. 16. У катода образуется полоса дисперсионной среды темного цвета, а у анода происходит сжатие структурного каркаса. Изменение знака электродов приводит к перемещению дисперсионной среды и структурного каркаса в сторону противоположных электродов. [c.149]

    Опыт 8. Электрические свойства коллоидных систем. Электрофорез. Заряженные коллоидные частицы в электрическом поле передвигаются в жидкости к катоду или аноду. Движение дисперсных частиц под влиянием электрического поля называется электрофорезом. Движение жидкости через пористую перегородку при наложении внешней разности потенциалов называется электроосмосом. Если через коллоидный раствор пропускать постоянный электрический ток, то к одному из электродов будут передвигаться заряженные коллоидные частицы, цротивоионы диффузного слоя передвигаются к другому электроду. [c.154]

    В полидисперсных эмульсиях подъем относительно более крупных частиц может тормозиться более мелкими или ускоряться при их слипании. Причем коагуляция и коалесценция играют решающую роль в ускорении процесса расслаивания эмульсии. Например, в эмульсиях типа жидкость — жидкость коагуляция частиц дисперсной фазы приводит к удивительным на первый взгляд результатам сливки молока относительно быстрее и полнее отстаиваются в глубоком сосуде, чем в мелком [201 ], а увеличение вязкости дисперсной среды иногда приводит не к замедлению, а наоборот, к ускорению скорости расслоения [202]. Мельчайшие капельки жира увлекаются более грубодисперсными капельками и выносятся с ними кверху, потому что концентрация более глубокодисперсных капелек на единицу поперечного сечения вскоре становится достаточно высокой для проявления фильтрационного эффекта. При добавлении веществ, уменьшающих агрегативную устойчивость (но одновременно повышающих вязкость молока), происходит быстрая коагуляция и агрегация частиц и, следовательно, увеличение скорости расслаивания эмульсии. Поэтому не случайно внимание исследователей привлекают вопросы, связанные с изучением влияния ПАВ на гидродинамику стесненного движения капель и пузырьков [71, 190, 203, 204]. Особенно сложными становятся процессы седиментации совокупности пузырьков в полидисперс-ной газовой эмульсии при перемене внешних условий (давления, температуры, при наложении электрического или ультразвукового поля), когда изменяется их устойчивость вследствие интенсификации процессов испарения легколетучих компонентов, фазовых переходов газ — жидкость, изменения свойств межфазной поверхности и т. д. [c.102]


Смотреть страницы где упоминается термин Влияние внешнего электрического поля. Влияние дисперсности: [c.188]   
Смотреть главы в:

Электронная теория катализа на полупроводниках -> Влияние внешнего электрического поля. Влияние дисперсности




ПОИСК





Смотрите так же термины и статьи:

Влияние внешних сил

Влияние внешних электрических полей

Внешнее поле

Поле электрическое

Поло электрическое внешнее



© 2025 chem21.info Реклама на сайте