Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бромиды гравиметрическое

Рис. 3-32. Прибор для определения воды гравиметрическим методом с применением бромида кобальта [146] Рис. 3-32. Прибор для <a href="/info/18643">определения воды</a> <a href="/info/10508">гравиметрическим методом</a> с <a href="/info/1743371">применением бромида</a> кобальта [146]

    Перхлорат количественно осаждается хлоридом тетрафениларсония (ТФА). С помощью этого реагента перхлорат можно не только выделять, но и гравиметрически определять. Иодид, перйодат, бромид, хлорат, роданид и перманганат в этих условиях также осаждаются. [c.402]

    В галогенидах натрия (фторид, хлорид, бромид, иодид), нитритах, нитратах и тетраборате натрий определяют гравиметрически в форме тетрафторобората с погрешностью не выше 0,25% [427]. В хлориде натрия определяют К [408, 1160], ВЬ [126, 408], Сз [408], [c.177]

    Определение можно закончить гравиметрически и одним из титриметрических методов определение содержания хлорида в осадке или избытка хлорида в растворе по методу Фольгарда, комплексометрическое определение свинца. Арсенат, фосфат, сульфат, сульфид, малые концентрации железа и алюминия мешают определению. Арсенит, небольшие концентрации бората и аммония, большие количества ацетата, перхлората, нитрата, бромида, иодида, натрия и калия не мешают определению фторида. [c.341]

    В некоторых случаях серебро можно определить взвешиванием бромида, иодида, цианида, роданида, циа-ната или вольфрамата серебра [1200], однако эти методы практически не используются в весовом анализе. Указанные выше методы гравиметрического определения серебра с неорганическими ионами имеют второстепенное значение по сравнению с осаждением его в виде хлорида. [c.67]

    Тигель Шотта с осадком комплекса бромида d с диантипирилметаном (выделенного как при гравиметрическом определении) переносят в коническую колбу, заливают 100—150 мл воды п осторожным вращением переводят [c.78]

    Сульфид серебра количественно осаждается сероводородом в кислых или щелочных растворах. Присутствие цианидов и тиосульфатов в растворе создает помехи, в результате чего некоторое количество хлорида серебра остается в растворе. Гравиметрически серебро может быть определено также в виде иодида или бромида. Благодаря большей чувствительности к свету и меньшей стабильности бромид серебра применяется чаще, чем хлорид. [c.152]

    Косвенные гравиметрические методы основаны на весовом определении продуктов реакций, протекающих количественно с нитритами. Такой реакцией может быть взаимодействие бромата серебра с азотистой кислотой после проведения этой реакции образующийся в результате восстановления бромид серебра может быть взвешен. [c.52]

    Поглотительные растворы. Для потенциометрического или гравиметрического определения хлорид- и бромид-ионов в качестве поглотительного раствора используют смесь 35%-ного раствора гидросульфита натрия и 1 н. раствора гидроксида натрия, взятых в соотношении 1 2. При иодиметрическом титровании бромид-ионов используется смесь 30%-ного раствора пероксида водорода и 1 н. раствора гидроксида натрия в соотношении 1 2. [c.378]


    Этот вид комплексообразовалия может использоваться в гравиметрических методах. Рассмотрим присутствующую в растворе смесь хлоридов, бромидов и иодидов, которые должны быть отделены друг от друга. Галогениды легко выделяются при осаждении нитратом серебра. При обработке осадка разбавленным раствором аммиака удаляется только хлорвд серебра, в то время как бромвд и иодид остаются в твердой фазе. После отделения раствора от осадка бромидов и иодидов и удаления аммиака выпариванием можно вновь осадить хло Ж1д серебра (если выпаивание осуществляется медленно и осторожно, то хлорид с >ебра выпадает в мелкокристаллической форме). При последующей обработке первого осадка, содержащего бромид и иодид серебра, концентрированным аммиаком растворяется бромвд серебра и таким образом отделяется от [c.211]

    В хлориде, бромиде, нитрате и нитрите натрия определяют натрий гравиметрически в форме тетрафторобората [427]. При нагревании соли с раствором HBF4 и высушивании при 170—175° С HF и Н3ВО3 полностью испаряются, образующийся NaBF4 термически устойчив при 200° С. Погрешность определения натрия не превышает 0,33%. [c.176]

    Для гравиметрического определения кадмия (II) готовят 1 7о-ный раствор бруцина в разбавленной (1 3) серной кислоте. Для осаждения Сс12+ раствор предварительно смешивают (1 1) с 10 %-ным раствором бромида калия КВг. Осадок промывают смесью 40 мл 1 %-ного раствора бруцина, 30 мл 10 %-ного раствора КВг и 80 мл воды. [c.128]

    Колориметрический метод определения влаги основан на гидратации кобальтовых солей. Например, безводный бромид кобальта (И) имеет бледно-серую окраску, переходящую при образовании гексагидрата в темно-красную (см. гл. 6). Гардинер и Кейт [146] использовали дибромид кобальта (II) в новом гравиметрическом методе, позволяющем определять свободную и связанную воду в почти сухих кристаллах рафинированного сахара. В первом варианте анализа свободную, или поверхностную, воду экстрагируют безводным хлороформом и затем осаждают в форме СоВг2 6Н.,0. Во втором варианте безводный дибромид кобальта непосредственно смешивают с тонкоразмолотой пробой (удельная поверхность 3500 см /г) под слоем хлороформа или четыреххлористого углерода. При этих условиях дибромид реагирует со связанной водой in situ. Данный метод не является абсолютным и требует построения градуировочных графиков по известным количествам воды в присутствии сухой порошкообразной сахарозы. При этом градуировочные графики зависимости количества воды от количества гидратированного дибромида кобальта оказались линейными. Данные Гардинера и Кейта [146] показали, что высушивание в сушильном шкафу при 105 °С вызывает термическое разложение сахара. Считается, что более точно соответствуют количеству свободной влаги результаты, получаемые при высушивании в вакуумном сушильном шкафу при 70 С или методом экстракции и осаждения дибромидом кобальта. Испарение в вакууме и прямое определение воды с дибромидом кобальта позволяет до- [c.188]

    При определении воды в сахаре Хилл и Доббс [85 ] помещали запаянную ампулу с образцом в колбу, которую затем вакуумировали. Ампулу разбивали и образец нагревали. Выделившаяся влага конденсировалась во второй вакуумированной колбе известного объема. Конденсат испаряли и измеряли давление пара. Сахар в аппарате можно измельчать, что позволяет определять общее содержание воды и содержание поверхностной воды. (При анализе рафинада и сахарного песка данный метод дает лучшие результаты, чем гравиметрический метод Гардинера и Кейте с использованием бромида кобальта, описанный в гл. 3.) Стадия конденсации позволяет устранить влияние адсорбированных газов, которые выделяются вместе с водой при нагревании образца. [c.548]

    Бромид можно определять гравиметрически в виде бромида серебра в тех же условиях, что и хлориды, определению мешают те же ионы. Методика, основанная на осаждении из гомогенного раствора, описана в работе [3]. Методика позволяет гравиметри- [c.263]

    Позже были изучены новые реагенты хлорид 2,4,6-трифенилпиридилия (ТФП) и нитрон [19]. ТФП (2%-ный раствор) образует в 0,2 М растворе НС1 осадки с иодидом, роданидом, нитрагом, перхлоратом, перманганатом, бихроматом, гексацианоферри-том(П) и хлоридными комплексами цинка, свинца, кадмия, олова (II), платины(IV) и золота (III). Осадки не образуют фторид, бромид, иодат, хлорат, сульфат, оксалат и хлоридный комплекс железа (III). Реагент можно использовать для гравиметрического определения 40—160 мг перхлората  [c.404]

    В настоящее время основные гравиметрические методы определения перхлорат-иона заключаются в осаждении его катионом тетрафепилфосфония [589, 679, 956] или четырехзамещенного аммония [545]. В качестве последнего используют, например, бромид н-тетраамиламмония и хлорид диметилфенилбензиламмония. Все перечисленные соединения образуют с перхлорат-ионом кристаллические соли, малорастворимые в воде и хорошо растворимые в хлороформе. Осадки высушивают при 105—110° С. Этим методом можно определить 1—25 мг перхлорат-иона с относительной ошибкой 1—4% [589, 679]. Кроме перхлорат-ионов осадки с указанными реагентами дают перманганат-, перренат-, перйодат- и хлорат-ионы. Определению мешают также ионы Hg(H), Sn(IV), d(II), Zn(H), Fe(III), o(II), которые осаждаются в виде комплексных анионов [МСУ или [М(8СМ)б] [545]. Хлорат-ион может быть удален кипячением исследуемого раствора с избытком хлористоводородной кислоты [589] или восстановлен бисульфатом натрия до хлорид-иона, который не мешает определению [545]. Мешающее влияние некоторых катионов может быть уменьшено связыванием их в прочные комплексы. Хлорид-, бромид-, нитрат-, карбонат-, оксалат-и фосфат-ионы с перечисленными реагентами не взаимодействуют. [c.34]


    Немаловажное значение имеет и правильное промывание осадка. При низкой растворимости для промывания применяют дистиллированную воду. Исключение составляют легко пептизирующиеся осадки (сульфиды и гидроксиды металлов, бромид и иодид серебра и др.), которые промывают раствором электролита, предотвращающего пептизацию. Чаще всего для этих целей используют разбавленные растворы летучих кислот, аммиака или солей аммония. Соли аммония дополнительно могут улучшить чистоту осадка, так как ионы аммония замещают некоторые из адсорбированных катионов нелетучих электролитов. Сами аммонийные соли при прокаливании разлагаются и улетучиваются. Отделенный и промытый осадок превращается в гравиметрическую форму путем высушивания и прокаливания. Если осаждаемая и гравиметрическая формы идентичны, то обычно достаточно одного высушивания при 378-383 К для удаления из нее влаги. Для ускорения высушивания промытый осадок дополнительно промывают небольшими порциями этанола или эфира, а затем высушивают в вакуумном шкафу, а при необходимости и прокаливают. Вопрос о том, при какой температуре следует данную осаждаемую форму высушивать или прокаливать, решают термогравиметрическим методом. Постоянная масса обычно свидетельствует об образовании вещества, имеющего постоянный состав, соответствующий химической формуле этого вещества. [c.278]

    Гравиметрическими н титрнметрическими методами. Авторы [157] рекомендуют спектрофотометрическии метод, так как, по их мнению, гравиметрические разделения и определения длительны и содержат такие источники ошибок, как неполнота осаждения и соосаждение других элементов. Однако это мнение ошибочно лучший из трех методов, предложенных этими авторами [157], основанный на образовании и экстракции комплекса палладия с фенилтиомочевиной, не достигает точности некоторых гравиметрических методов. Более того, даже единичное определение по методике, требуюшей разрушения органических веществ и обработки царской водкой и соляной кислотой, вряд ли быстрее гравиметрического определения. Поскольку серная кислота мешает, этот метод нельзя применять для анализа корольков после обработки их серной кислотой. Колориметрическое определение палладия в виде комплексного бромида рекомендуется для определения больших концентраций. После некоторых изменений метод можно применять для анализа концентратов платиновых металлов. [c.239]

    Методы определения брома обычно включают гравиметрическое определение в виде бромида серебра, низкая растворимость которого служит также основой и для большинства титриметрических методов. Некоторые методы титрования основаны на образовании недиссоциирующегося НдВгг с использованием индикаторов для определения скачка концентрации ионов двухвалентной ртути в конечной точке. Фотометрические методы, основанные на реакциях замещения с участием органических молекул или на окислительной способности брома, рассмотрены в гл. 11 и 12. [c.315]

    Свободный бром можно определять гравиметрическими, тит-риметрическими и колориметрическими методами, однако при анализе органических соединений эти методы не используют, поскольку при разложении и в ходе последующих операций бром сразу же превращается в бромид-ионы. Образующийся при мокром разложении сильными окислителями в кислой среде свободный бром при поглощении в поглотительном растворе превра щается в бромид-ионы, а при дейетвии определенных агент [c.364]


Смотреть страницы где упоминается термин Бромиды гравиметрическое: [c.20]    [c.72]    [c.197]    [c.197]    [c.667]    [c.119]    [c.236]    [c.198]    [c.279]    [c.36]    [c.365]    [c.400]   
Аналитическая химия брома (1980) -- [ c.71 ]

Определение анионов (1982) -- [ c.263 ]




ПОИСК





Смотрите так же термины и статьи:

Бромид-ион бромидах

Бромиды



© 2024 chem21.info Реклама на сайте