Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пиридин дипольный момент

    В задаче 1.17 требуется сравнить это уравнение с уравнением Антуана для пиридина, дипольный момент которого составляет 2,3 Д. Это сравнение дает результаты достаточно полезные в практическом отношении, оно также является более точным при низких температурах, чем уравнение Ли — Кеслера, которое, однако, не предназначено для приложения к полярным веществам. [c.31]

    Пиридин (62), подобно бензолу, имеет шесть л-электронов (один из которых поставляется азотом) на делокализованных п-орбиталях, но, в отличие от бензола, л-орбитали пиридина деформированы из-за смещения электронов в сторону атома азота, так как азот более электроотрицателен, чем углерод. Это проявляется в наличии у пиридина дипольного момента отрицательный конец диполя находится на атоме азота, а положительный — на ядре  [c.184]


    Дипольные моменты пиридина и пиперидина соответственно равны 2,260 и 1,170. Укажите направление векторов дипольных моментов. Почему при восстановлении ядра пиридина дипольный момент уменьшается  [c.226]

    Сопоставим теперь дипольные моменты комплексов триэтил- и трифенилбора с пиридином. Дипольный момент комплекса (flк) можно представить в виде векторной суммы [c.16]

    Это подтверждает высокий дипольный момент пиридина (2,26 Д). [c.544]

    Рассмотрите строение молекулы пиридина. Каков тип гибридизации атомов углерода н азота Охарактеризуйте ароматичность пиридина. Опишите распределение л-электронной плотности. Почему пиридин в отличие от бензола имеет дипольный момент (2, 20)  [c.209]

    Энергия поляризационного взаимодействия между молекулами примерно на порядок меньше энергии лондоновского и дипольного взаимодействия. Например, для двух молекул пиридина при Я = 2 нм, о 1,6- 10 кк Т при 300 К- Тем не менее, поляризационное взаимодействие между молекулами оказывает существенное влияние на свойства полярных жидкостей. Полярная молекула поляризует всю окружающую ее массу молекул и создает (индуцирует) в этом окружении некоторый дипольный момент А[х, величина которого зависит от поляризуемости и диэлектрической проницаемости среды. Поляризация окружающей среды создает поле ( реактивное поле) в том элементе объема, где находится полярная молекула. В результате происходит дополнительная поляризация полярной молекулы. Реакция окружающей среды на присутствие в ней полярной молекулы приводит к появлению реактивного поля, действующего на молекулу. В итоге возникает существенный дополнительный вклад в энергию взаимодействия полярных молекул со средой. Нетрудно понять, что этот вклад пропорционален числу молекул в единице объема. Он значителен в жидкой фазе и мал в разреженных парах. Влияние этого фактора будет рассмотрено в гл. П. [c.29]

    Дипольный момент пиперидина 1,170, а пиридина 2,260. Укажите направление векторов дипольных моментов и объясните причины увеличения дипольного момента пиридина. [c.26]

    Следует отметить, что, по данным Кравченко, значительная разница в полярности, даже при малых размерах и незначительной разнице в форме молекулы, отрицательно влияет на способность к образованию твердых растворов, например бензол—пиридин и тиофен—пиридин. Слабую смешиваемость симметричных и несимметричных молекул также можно объяснить значительной разницей дипольных моментов. [c.71]

    Помимо электронных и магнитных вкладов в протонные химические сдвиги для полноты картины нужно рассмотреть еще два эффекта, которые имеют иногда весьма большое значение. В молекулах с сильно полярными группировками под влиянием электрического дипольного момента могут происходить изменения плотности заряда на некоторых протонах, так как электростатические силы могут искажать зарядовое облако соответствующей связи С—Н. Связывающие электроны смещаются либо к атому водорода, либо от него в зависимости от направления связи С—Н по отнощению к вектору поля, что приводит соответственно к экранированию или дезэкранированию протона. Как можно представить себе на основании рис. IV. 17, диполь-ные моменты в пиридине и нитробензоле, локализованные на атоме азота и на центре связи С—N соответственно, вызывают дезэкранирование протонов, поскольку электроны смещаются вдоль силовых линий к положительному концу диполя. В соответствии с теорией Букингема эффект электрического поля можно количественно описать соотношением [c.103]


    СКОСТИ на 5/ 2-гибридизованной орбитали эта пара электронов не участвует в ароматической стабилизации я-электронной системы и ответственна за основность пиридина в) пиридин обладает постоянным сильным диполем, обусловленным, с одной стороны, большей электроотрицательностью азота по сравнению с углеродом, с другой — собственным дипольным моментом неподеленной пары атома азота. [c.14]

    Наиболее примечательное отличие пиридинов от их Ы-окисей заключается в том, что последние гораздо более чувствительны к реакциям электрофильного нитрования, чем пиридины. Полагают, что это объясняется мезомерным электронодонорным влиянием кислорода, формально аналогичным электронодонорному влиянию кислорода в фенолятах. Сравнение дипольных моментов приведен- [c.83]

    Сравнительно небольшое различие в дипольных моментах пиридина и его Ы-окиси свидетельствуют о значительном вкладе канонических форм (18) и (19) в мезомерную систему. Однако следует [c.84]

    Поскольку индуктивный и мезомерный эффекты имеют одну и ту же направленность, молекула пиридина поляризована со смещением электронной плотности к атому азота. Это также означает, что на атомах углерода пиридинового цикла локализуется частичный положительный заряд, особенно на а- и у-атомах углерода. Поскольку на атомах углерода молекулы пиридина наблюдается некий дефицит элекгронов, пиридин и аналогичные гетероароматические соединения принято относить к электронодефицитным гетероциклическим соединениям или, как иногда говорят, л-дефицитным. Сравнение дипольного момента пиридина с дипольным моментом пиперидина, полярность которого связана исключительно с индуктивным эффектом, показывает, что пиридин дополнительно поляризован вследствие перераспределения электронной плотности в системе я-электронов. [c.18]

    Наиболее примечательное отличие N-оксидов пиридина от самих пиридинов состоит в гораздо большей склонности первых к реакциям электрофильного нитрования. Предположительно это связано с мезомерным электронодонор-ным влиянием атома кислорода N-оксидного фрагмента, аналогичного тому, которое увеличивает склонность фенолов и фенолятов к таким реакциям. Подтверждением этого предположения может служить сравнительное сопоставление дипольных моментов триметиламина и соответствующего N-оксида, с одной стороны, и дипольных моментов пиридина и его N-оксида, с другой. Разность дипольных моментов во второй группы соединений, равная 2,03 D, существенно меньше, чем разность дипольных моментов в первой группы соединений, равная 4,37 D. Такое малое отличие дипольных моментов пиридина и его N-оксида свидетельствует о существенном вкладе в структуру N-оксида пиридина канонических форм, в которых кислород нейтрален, а пиридиновое кольцо отрицательно заряжено. В действительности ситуация еще более тонкая, поскольку резонансные формы, несущие положительный заряд в а- и у-положениях, предполагают существование также противоположной поляризации цикла, что сказывается на облегчении реакций нуклеофильного замещения по этим положениям. Таким образом, N-оксидная группа в N-оксидах пиридина в зависимости от условий облегчает протекание реакций как электрофильного замещения, так и нуклеофильного замещения по а- и у-положениям. [c.141]

    Дипольный момент пиридина равен 2,2 О, и азот является отрицательным концом диполя, в то время как в пирроле с дипольным моментом 1,8 В азот служит положительным концом диполя  [c.370]

    Дипольный момент акридина равен—1,95 при 14° (пиридина—2,21 и анилина -Ь 1,55) [21]. [c.376]

    Пиридин XXIV подобно бензолу имеет шесть я-электронов (один из которых поставляется азотом), расположенных на делокализованных я-орбиталях. Однако в отличие от бензола в пиридине я-орбитали деформированы, поскольку электроны смещены в сторону атома азота из-за его более высокой электроотрицательности по сравнению с углеродом. Это проявляется, в частности, в наличии у пиридина дипольного момента, вследствие чего пиридиновое кольцо, как и следовало ожидать, дезактивировано в отношении электрофильного замещения в этом отношении пиридин можно сравнить с нитробензолом XXV, [c.166]

    Недавно Браун и Хеффернан [9] вычислили по методу МО дипольный момент пиридина. Дипольный момент рассматривался как сумма следующих слагаемых  [c.208]

    УШж вЫ-окись пиридина, дипольный момент был бы равен 2,22+4,37=6,59 Д. Тот факт, что измеренный момент составляет только 4,24 Д, означает, что вклад структур УШд — УШж значителен, и это приводит к понижению дипольного момента от 6,59 до 4.24Д. б) Наличие электронодонорных групп в положении 4 будет уменьшать дипольный момент, обусловленный структурами УП1д —УП1ж, увеличивая тем самым разницу дипольных моментов 4-замещенных пиридинов и их N-oки eй. И наоборот, электроноакцепторные группы будут уменьшать это различие. [c.800]

    Органические соединения класса пиридинов широко используются в качестве ингибиторов коррозии в сероводородсодержащих минерализованных коррозионных средах. В последнее время находят широкое применение их четвертичные соли, такие как хлористые аминопиридины. Однако не все соединения проявляют достаточную эффектив1юсть в одних и тех же условиях. Для установления зависимости степени заш иты стали индивидуальными соединениями от квантово-химических параметров последних были проведены расчеты методом пренебрежения двухатомным перекрыванием с помощью программы АМРАС таких параметров как дипольный момент молекул, энергии на верхних заполненных молекулярных орбиталях (ВЗМО) и на нижних свободных молекулярных орбиталях (НСМО), максимальный и минимальный заряды на атомах. [c.289]


    Тем более становится непонятным, почему пиридин является менее сильным основанием, чем пиперидин, на атоме азота которого сосредоточена меньшая избыточная электронная плотность (дипольный момент пиперидина значительно меньше и равен 1,17Д). Основная причина, почему основность азота в пиридине понижена, заключается в том, что азот в этом соединении находится в состоянии sp -гибpидизaции. Согласно соображениям, высказанным выше относительно углерода, неподеленная пара электронов атома азота, ответственная за основные свойства, более сильно притягивается к ядру атома азота, что и приводит к снижению основности. [c.198]

    К ароматическим соелипештм с п= относится азотсодержащий аналог бензола — пиридин (5). В отличие от пиррола у пиридина неподеленная на )а электронов атома азота не участвует в образовании ароматической системы, и поэтому он обладает основными свойствами. Пиридин имеет значительный дипольный момент (2,11 Д). В отличие от пиррола отрицательным концом диполя является атом азота, так как азот более электроотрицательный элемент, чем кислород. Это одна из причин, по которой пиридин значительно труднее, чем бензол, вступает в реакции с электрофильными реагентами. [c.311]

    Палладиевый комплекс получен из раствора, содержащего бромид-ион и пиридин 5H5N (этот лиганд-хороший донор, легко координируемый ионами металлов). Элементный анализ комплекса показал, что он содержит 37,6% брома, 28,3% углерода, 6,60% азота и 2,37% водорода. Это соединение слабо растворимо в ряде органических растворителей, его спиртовый и водный растворы не проводят электрический ток. Экспериментально установлено, что у данного комплекса нулевой дипольный момент. Запищите химическую формулу этого комплекса и укажите его предполагаемую структуру. [c.406]

    При расчетах дипольных взаимодействий молекул, имеющих постоянные дипольные моменты (рь ра), обычно вычисляют энергию, усредненную по всем ориентациям. Если положить среднее расстояние между молекулами очень малым, то расчет может дать для неусредненных величин значения, зависящие от ориентации, причем различия в энергиях будут достигать энергии теплового движения кТ или даже превышать ее. Это обстоятельство, как заметил М. И. Шахпаронов , вело иногда к переоценке роли дипольных сил. В действительности необходимо учитывать реальные размеры молекулы и те минимальные расстояния, для которых расчет энергии дипольного взаимодействия имеет смысл. В примере, приведенном М. И. Шахпароновым, энергия дипольного взаимодействия между молекулами пиридина равнялась бы 2кТ, если принять за среднее расстояние между молекулами Й, вычисляемое по [c.239]

    Пример. Дипольный момент молекул пиридина С5Н5 N равен 2,2 дебая (D). Пусть расстояние R между двумя небольшими молекулами сравнительно велико — / = 2 нм. Расчеты по формуле (1.24) ют од,тах = 0.12- Дж = = 0,03 ЙБ Т при Т =300 К. Среднее расстояние R между центрами соседних молекул жидкого пиридина может быть оценено по формуле  [c.22]

    Пиррол XXVI также имеет делокализованные я-орбитали, однако азот участвует в образовании этих орбиталей уже двумя своими электронами. Поэтому пиррол практически не обладает свойствами основания (см. стр, 91), и его дипольный момент имеет направление, противоположное направлению дипольного момента в пиридине. [c.167]

    При помощи экстраполяции к бесконечно разбавленному раствору в диоксане найдено, что молярная поляризация окиси пиридина 5H5NO составляет 411 см /моль при 25° С. Молярная рефракция молекулы 5H5NO равна 28 см моль, что приблизительно соответствует 4л.Уд (ае-[-ао)/3. Рассчитать дипольный момент. [c.454]

    НЫХ ниже соединений и их N-oки eй подтверждает такое предположение разность дипольных моментов пиридина и его Ы-окиси (2,03 О) значительно ниже разности дипольных моментов триме-тиламина и его N-oки и (4,37 О). [c.84]

    Имидазол, оксазол и тиазол — очень устойчивые соединения, неспосабные самооиисляться. О ксазол и тиазол — жидкости, смешивающиеся с водой во всех отношениях, с запахом, напоминающим запах пиридина, и с нормальными температурами кипения 69 и 117°С. Имидазол и 1-метилимидазол растворимы в воде и не имеют запаха они шпят при довольно высоких температурах, равных 256 и 199 °С, вероятно, из-за диполярной ассоциации. Ассоциация возникает в результате постоянного разделения зарядов между двумя кольцевыми атомами азота, которое гораздо более значительно, чем в оксазоле или тиазоле это видно из сравнения дипольных моментов имидазола (5,6 0), оксазола (1,4 0) и тиазол а (1,60). Кроме того, в незамещенном имидазоле немалое значение имеет и влияние достаточно сильных водородных связей. [c.329]

    Таким образом, восстанавливается винильная группа в производных пиридина несколько легче, чем в производных стирола, когда она соединена с бензольным кольцом. Это связано с тем, что атом азота в пиридине, как более электроотрицательный, чем атом углерода, оттягивает электроны, и углеродные атомы имеют более низкую электронную плотность, чем в молекуле бензола. Неравномерное распределение электронов в пиридине обусловливает и появление у его молекул дипольного момента (около 2,2 Д). Такое полярографическое поведение производных пиридина соответствует и большей реакционной способности его по сравнению с бензолом в отношении к нуклеофильным реагентам в обычных химических реакциях. При этом нуклеофильные реагенты (например, амид натрия) атакуют положения а и у, имеющие наиболее низкую электронную плотность в молекуле пиридина. Известно также, что атомы галогенов в а- и у-положениях пиридиниевого цикла являются сильно реакционноспособными. [c.126]

    Все соображения, высказанные при обсуждении свойств 2-оксипиридина, полностью подходят и для аналогичного случая 4-оксипиридина. Последний представляет собой винилог 2-оксипиридина, и этим вполне объясняются его реакции. Это хорошо видно на примере превращения 4-оксипиридина в 4-хлор-пиридин, а также превращения его в Ы-метил-4-пиридон при действии иодистого метила. Измерение дипольных моментов [83 и спектров поглощения 182], проведенные для 4-оксипиридина, указывают на то, что последний в нейтральных растворах существует главным образом в пиридонной форме. [c.341]

    Пиридазин является слабым однокислотным основанием с довольно высокой температурой кипения. Сам пиридазин представляет собой бесцветную жидкость со слабым запахом, напоминающим запах пиридина, т. пл.—6,4° т. кип. 207,4° в атмосфере азота при давлении 762,5 мм по 1,5231 1,1054 [16]. На основании криоскопических определений пиридазин, по-видимому, только немного ассоциирован в бензоле или диоксане его высокая температура кипения объясняется большим дипольным моментом (около 4D) [17, 100], как это наблюдается и в случае нитробензола. Рассчитанное значение диполь- ного момента [101, 102] согласуется с экспериментальными данными. Величина поверхностного натяжения пиридазина (46,9 дн1см при 34°) также близка к соответствующей величине для нитробензола, однако пиридазин имеет низкую константу Этваша, которая заметно меняется с температурой. Была измерена также вязкость пиридазина [17]. Абсорбционный спектр этого соединения имеет две сильных полосы, Х акс. 245—250 и 338 мц, в гексане в воде вторая из этих полос смещается до 300 мц водный раствор хлористого водорода обнаруживает очень сходную кривую [64, 103]. Квантовомеханические расчеты предсказывают появление полосы при 336 мц [104]. Исследован также спектр паров пиридазина [105]. Пиридазин смешивается во всех отношениях с водой, бензолом, диоксаном и спиртом несколько менее растворим в эфире и почти совсем нерастворим в циклогексане [17]. Он представляет собой очень слабое основание, у которого рКа равно только 2,33 (у пиридина p7< 5,23) [106]. Однако пиридазин является более сильным основанием, чем пиримидин (1,30) или пиразин (0,6). [c.93]


Смотреть страницы где упоминается термин Пиридин дипольный момент: [c.16]    [c.670]    [c.198]    [c.354]    [c.370]    [c.59]    [c.991]    [c.241]    [c.15]    [c.433]    [c.333]    [c.146]    [c.588]    [c.370]    [c.340]    [c.340]   
Механизмы реакций в органической химии (1977) -- [ c.166 ]

Органическая химия Том2 (2004) -- [ c.450 ]

Теоретические основы органической химии (1964) -- [ c.673 ]

Основы органической химии 2 Издание 2 (1978) -- [ c.383 ]

Курс физической органический химии (1972) -- [ c.503 ]

Основы органической химии Ч 2 (1968) -- [ c.295 ]




ПОИСК





Смотрите так же термины и статьи:

Дипольный момент

Пиридин оксид дипольный момент

Электрический дипольный момент пиридина



© 2025 chem21.info Реклама на сайте