Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделения ступени и числа тарелок

    При расчете ректификационных колонн наиболее простой, однако недостаточно обоснованный подход состоит в использовании понятия эффективности т](.р самого колонного аппарата, определяемой как отношение числа теоретических ступеней, требующихся для данного разделения, к числу действительных ступеней, осуществляющих такое разделение. Эффективность т](.р, представляющая таким образом некий средний к. п. д. реальной тарелки, может быть получена на основе обобщения опытных данных, полученных при обследовании действующих колонн, и сравнения этих данных с числом теоретических ступеней, полученным по расчету. При этом подходе на величине среднего к. п. д. тарелки сказываются не только неточности опытного обследования, но и допущения, принимаемые в том или ином методе расчета числа теоретических тарелок. [c.208]


    Определив число теоретических ступеней разделения, обычно обнаруживают, что это число меньше числа реальных тарелок. Следовательно, реальная тарелка работает не идеально, и поэтому работу тарелки оценивают по отношению найденного числа теоретических ступеней разделения к числу реальных тарелок. Это отношение называют средним относительным обогащением или средним коэффициентом полезного действия тарелки (по Киршбауму) [103] [c.136]

    При практических расчетах приходится почти полностью исходить из так называемого к. п. д. колонны, который по определению равен отношению числа теоретических равновесных ступеней, требуемых для данного разделения, к числу фактических тарелок. Эти к. п. д. для колонны в целом установлены экспериментально и их можно использовать при расчете аналогичных колонн. Для правильного использования к. п. д. колонны необходимо знать зависимость к. п. д. от а) типа и конструкции тарелки, б) физических свойств жидкости и пара, в) расхода жидкости и пара и г) длины пути жидкости по тарелке. [c.166]

    Число теоретич. тарелок м.б. найдено аналитически путем совместного решения ур-ний, описывающих равновесную и рабочую линии процесса, или графически. В последнем случае строятся ступени между рабочей и равновесной линиями в пределах заданных концентраций. Следует иметь в виду, что одна теоретич. тарелка выражает одно изменение движущей силы по газовой Ау и одно по жидкой фазам, причем число теоретич. тарелок и движущая сила процесса находятся в обратном соотношении, т. е. чем больше движущая сила, тем меньше потребуется теоретич. тарелок для заданного разделения. Действительное число тарелок, к-рое необходимо установить в аппарате, определяется [c.657]

    Для анализа работы колонны, расчета состава дистиллята и остатка и распределения концентраций ЛЛК по высоте аппарата используют понятие о теоретической ступени разделения, или теоретической тарелке (ТТ). Такая ступень (тарелка) соответствует нек-рому гипотетич. участку аппарата, где жидкость и покидающий ступень пар находятся в равновесии. Число ТТ (п ), необходимое для получения дистиллята и остатка заданного состава, можно найти [c.231]

    Изложенная в предыдущих разделах методика расчета ректификационной колонны позволяет установить число теоретических ступеней контакта, необходимых для рассматриваемого разделения. Гипотеза теоретической тарелки, использованная для создания определенности при переходе от составов фаз в одном отделении колонны к составам фаз в смежном, выражает лишь идеализированную схему взаимодействия парового и жидкого потоков на тарелке и хотя дает качественно правильную картину этого явления, тем не менее недостаточна для его количественной оценки. [c.354]


    В режиме полной флегмы число степеней свободы равно двум. В качестве параметров, определяющих процесс ректификации, можно выбрать отбор одного из продуктов разделения (D) и общее число ступеней разделения (N). (Положение тарелки питания в данном случае не влияет на процесс, поскольку конечный входной поток несоизмерим с бесконечными внутренними потоками.) Функции XD=f (D, N) и xw = f2 D, N) в общем случае однозначны. [c.131]

    На интенсивность процесса разделения в числе других факторов влияют физические свойства разделяемой смеси. Интенсивность характеризуется коэффициентом полезного действия одной ступени (тарелки), величина которого при ректификации обычно составляет 50—60% нри абсорбции к. п. д. значительно ниже и не превышает 30—50% более высокие значения к. п. д. относятся к абсорбентам с низким молекулярным весом (например, Сз). [c.99]

    Число теоретических ступеней контакта, или число теоретических тарелок, может быть определено аналитически или графически совместным решением уравнений равновесия и рабочей линии процесса. Одна теоретическая тарелка выражает одно изменение движущей силы по газовой Д г/ и одно по жидкой Дх фазам, причем число теоретических тарелок и движущая сила процесса находятся в обратном соотношении т. е. чем больше движущая сила (больше отрезки Дг/ и Дх), тем меньше потребуется теоретических тарелок для данного разделения. Действительное число тарелок, которое необходимо установить в аппарате, [c.208]

    Скорость процесса абсорбции может быть выражена также высотой единицы переноса (ВЕП), что соответствует высоте Аэ аппарата, эквивалентной одной теоретической ступени разделения (одной теоретической тарелке). Обозначая общую ВЕП в концентрациях фаз через Но у ъ Ьа число единиц переноса — через Л"о I/ и Л о X, число теоретических тарелок — через высоту аппарата — через к и пределы изменения концентраций для всего аппарата — через уу,, /к и хк, получим [c.40]

    Отклонение реальной тарелки от нормы для теоретической ступени контакта имеет следствием сужение разрыва между составами фаз па смежных тарелках, приводящее к увеличению числа реальных тарелок против теоретически необходимого для данного разделения. Причины подобного рода отклонений оказываются самыми разнообразными и зависят от множества условий, определяемых как рабочими параметрами режима колонны — давлением, температурой, количествами паровых и жидких потоков, так и свойствами разделяемой системы — плотностью и вязкостью паров и флегмы, относительной летучестью ее компонентов, поверхностным натяжением насыщенной жидкости. Следует также указать и на влияние чисто конструктивных факторов, таких, как тип тарелки, размеры сливного устройства, расстояние между тарелками. Учет совокупного действия всех указанных факторов весьма сложен, и этим объясняется широкое привлечение эмпирических корреляций для определения эффективности реальных тарелок. [c.209]

    Оптимальным принято считать такое расположение тарелки питания, при котором удается обеспечить назначенное разделение при наименьшем числе теоретических ступеней. [c.410]

    При нумерации тарелок отпарной колонны снизу вверх паровой поток, поступающий на нижнюю тарелку секции, и жидкий остаток, отводимый из колонны, снабжены будут дополнительным нижним индексом О или R общее число ступеней разделения совпадает с индексом жидкого питания, поступающего на верхнюю тарелку. [c.424]

    В результате расчета получают распределение концентрации паровой и жидкой фаз на тарелках по высоте колонны и число ступеней контакта, необходимое для достижения заданной степени разделения. [c.199]

    Предположим, что нагревается смесь состава х . При температуре 1 она начинает кипеть, при этом паровая фаза имеет состав у. Жидкая фаза Хд находится в равновесии с паровой фазой у при температуре /. Изобарные кривые кипения и конденсации определяют экспериментально так же, как и кривую равновесия (см. разд. 4.6.З.). Диаграмму t—х—у как и диаграмму равновесия у—х можно использовать для определения требуемого числа теоретических ступеней разделения. На рис. 59 (см. разд. 4.7) изображена кривая равновесия для смеси бензол— толуол, построенная на основе изобарных кривых кипения и конденсации. Точки Л и В лежат в этом случае одна под другой. Диаграмма 1—х—у имеет то преимущество, что в процессе перегонки можно по температуре в головке колонны определять концентрацию головного продукта. При работе с тарельчатыми колоннами эта диаграмма позволяет проводить текущий контроль состава смеси на тарелках по перепаду температуры в колонне. По температурам на тарелках можно установить оптимальную тарелку питания и тарелку для отбора промежуточного продукта. [c.75]

    При (рис. ХП-19, б), когда рабочие линии пересекаются с линией равновесия, в точке пересечения движущая сила равна нулю. Значит, для того чтобы достигнуть концентраций фаз, соответствующих их составам на питающей тарелке, потребовалась бы бесконечно большая поверхность контакта фаз, т. е. бесконечно большое число ступенек — теоретических ступеней разделения. Таким образом, при R разделение возможно только в гипотетической ректификационной колонне бесконечно большой в ы с о т ii. При этом расход греющего пара, который при прочих равных условиях пропорционален флегмовому числу, т. к. G Р (R + 1), будет наименьший. [c.491]


    Имеются два основных аспекта изучения процесса ректификации. Первый из них касается конструирования колонны и нахождения оптимального технологического режима ее работы, второй связан с управлением ректификационными установками. При решении задач первого типа определяется число ступеней, необходимых для достижения требуемой степени разделения исходной смеси, оптимальное расположение питающей тарелки и боковых выводов и вводов потоков, требуемая величина флегмового числа и т. д. Для этого типа задач используются уравнения статики процесса, подобные приведенным на рис. У1И-10 уравнениям динамики, но из них исключены члены, содержащие производные. Задачи оптимального проектирования (расчет статики процесса ректификации) решаются обычно методами динамического программирования, наискорейшего спуска и другими с применением цифровых вычислительных машин.  [c.162]

    Если требуется определить необходимое число теоретических тарелок в пределах заданного изменения концентрации, то на диаграмме X—У между линией фазового равновесия и рабочей линией строится ломаная линия с прямыми углами. Число ступеней, полученное при построении этой ломаной, и будет числом теоретических тарелок, необходимых для заданного изменения концентрации или для заданного разделения смеси. На рис. 96 показано, что для изменения концентрации от Х4 до Xs необходимо иметь 4 теоретические тарелки. [c.290]

    При кратности орошения 26,0 требуется всего 58,1 теоретическая ступень разделения (или с учетом кипятильника, число теоретических тарелок в колонне будет на одну меньше, т. е. 57,1 теоретической тарелки). [c.109]

    Задача решается в следующей постановке. Заданы — состав сырья, входные и выходные потоки, потоки пара и жидкости в ректификационных колоннах и между ними, а также числа ступеней разделения в каждой секции. Определяются— составы продуктов разделения, а также составы на всех тарелках ректификационной системы. В начальном приближении задаются составы жидкости на каждой ступени разделения. [c.102]

    В качестве простейшего алгоритма может быть использован метод расчета от тарелки к тарелке в одном направлении с заданием начального состава продуктов разделения [5]. Задача решается в проектной постановке по одному из компонентов (продуктовому) с определением необходимого числа ступеней разделения. В качестве критерия перехода от расчета одной секции колонны к другой используется отношение концентраций двух компонентов в сырье. Критерием окончания итерации является достижение заданной концентрации продуктового компонента. [c.108]

    Молекулярная Р. реализуется в условиях высокого вакуума (неравновесного испарения), когда б. ч. испарившихся молекул без столкновения между собой долетает до пов-сти конденсации и остается на ней. При расчете разделения в описанном аппарате можно применить аналит. и графич. методы, используемые для тарельчатых аппаратов. При этом вместо коэф. относит, летучести, кпд тарелки и числа ТТ необходимо применять соотв. коэф. разделения при неравновесном испарении (а ), кпд отдельной ступени и число теоретич. мол. тарелок  [c.233]

    В идеальном случае температуры жидкости и пара при их контакте в каждом кубе выравниваются, составы обеих фаз становятся равновесными, низкокипящий компонент (более летучий) диффундирует из жидкости в пар, а вышекипящий — из пара в жидкость. Такой однократный контакт жидкости и пара, завершающийся достижением фазового равновесия, называется, как уже отмечалось равновесной ступенью, или теоретической тарелкой. В нашем примере (рис. Х1-5) число теоретических тарелок равно числу последовательно соединенных дистилляционных кубов. На рис. Х1-5, б изображены в диаграмме /—X, у изотермы, соответствующие отдельным теоретическим тарелкам. Рассмотренный процесс разделения жидкой смеси называется ректификацией. [c.515]

    Число эффективных ступеней разделения Л в зависимости от высоты тарелки и длины пути разделения [c.122]

    Зависимость эффективности разделения (согласно хроматограмме) выраженная как число эффективных ступеней разделения Л /с, от высоты тарелки и длины пути разделения [c.126]

    Алгоритм проектного расчета. Как отмечалось ранее, математическое описание колонны представляет собой систему нелинейных алгебраических уравнений высокой размерности, решение которой производится итеративными методами, причем скорость сходимости зависит как от начального приближения, так и от режима работы колонны. Поэтому исключение итеративного расчета по отдельным переменным в процессе поиска оптимального решения позволит существенно сократить объем вычислений. Ниже предлагается метод расчета, основанный на формулировании задачи как системы нелинейных разностных уравнений с граничными условиями, решение которой осуществляется по методу квазилинеаризацпп с использованием принципа суперпозиции. Особенностью метода является пригодность для расчета колонн любой сложности с учетом всевозможных алгоритмов описания отдельных явлений (фазовое равновесие, кинетика массопередачи и т. д.), а также возможность исключения итерации по поиску флегмового потока, обеспечивающего заданное качество продуктов разделения при известном числе ступеней разделения. Оптимальное положение тарелки питания в смысле некоторого критерия (например, термодинамического или технологического) определяется непосредственно в ходе потарелоч-ного расчета колонны. [c.328]

    Для расчета состава дистиллата и остатка, а также распределения копц. ЛЛК но высоте колонны использ. понятие теоретич. ступени разделения, или теоретич. тарелки (ТТ), на к-рой жидкость и пар, покидающие ее, находятся в равновесии. Число ТТ (Ит), необходимое для получения дистил- [c.504]

    В одном из патентов [38] описана схема, в которой адсорбент непрерывно пропускается в последовательном порядке через песколько зон контакта, В каждой зоне адсорбент находится во взвешенном состоянии. Адсорбент выпускается из зоны, отделяется от жидкости и затем вводится в следующую зону. Жидкость последовательно пропускается через зоны контакта в противоположном направлении. В каждой зоне по существу происходит процесс контакт шго взаимодействия, однако, чтобы достигалась желаемая степень разделения, число зон должею быть достаточно большим. Можно тaIiжe производить орошение. Анализ процесса можно выполнить при помощи диаграммы Мак-Кэба-Тиле, в которой состав внутрипоровой жидкости заменяется составом пара. Целесообразно пользоваться объемными, а не молярными концентрациями. Существенное различие при этом заключается в том, что рабочие линии процесса могут находиться в любом месте диаграммы, а линия, проходящая под углом 45° к осям, не имеет особого интереса. Число ступеней на такой диаграмме представляет собой теоретическое число зон контакта. Степень приближения к равновесию на каждой ступени экврхвалентна коэффициенту полезного действия тарелки. Можно определить среднее время, необходимое для достижения различных степеней приближения к равновесию, и рассчитать, каково должно быть оптимальное соотношение между числом ступеней и их емкостью. [c.164]

    На реальных тарелках практически никогда не достигается к. п. д. 100%, что возможно для идеальных тарелок обычно к. п. д. составляет 50—90% . Это вызвано, во-первых, тем, что перемешивание пара и жидкости в большинстве случаев не является совершенным, и, во-вторых, тем, что пар, особенно при больших скоростях, увлекает брызги жидкости на вышележащую тарелку. Кроме того, колонны, как правило, работают не с бесконечным флегмовым числом, а с конечным, так как целью любой ректификации является получение дистиллята. Как показал Аншюц [133], коэффициент полезного действия тарелок может быть учтен при графическом построении теоретических ступеней разделения по методу Мак-Кэба и Тиле. [c.97]

    Для ректификации с бесконечным флегмовым числом Штаге и Шульце [146] предлагают метод расчета числа теоретических ступеней, который связан с построением так называемой дифференциальной кривой. Согласно этому методу по возможности в большем масштабе (ось абсцисс примерно 1 м) строят график зависимости разности у —от Хд- Таким образом получают дифференциальную кривую выпуклой формы (рис. 69). С помощью кривой строят график зависимости число теоретических ступеней разделения — концентрация (рис. 70). Построение начинают с очень низкой концентрации, например 0,16% (мол.), которой на дифференциальной кривой (см. рис. 69) соответствует обогащение у —Хв) = 0,28%. Это значение прибавляют к 0,16% и получают концентрацию жидкости на второй тарелке, равную 0,44%. Для этого значения на диаграмме снова определяют обогащение, [c.109]

    Рассмотрим часть диаграммы для графического определения числа теоретических ступеней разделения по. методу Мак-Кзба и Тиле (рис. 79). В тарельчатой колонне между жидкостью состава 1/ , находящейся на тарелке, и поднимающимися парами устанавливается термодинамическое равновесие . Концентрация паров, покидающих тарелку, равна Такую же концентрацию (г/а) имеет жидкость, находящаяся на вышележащей тарелке . В паровом пространстве между тарелками (а следовательно, между точками у и у2) массообмен практически не происходит. [c.123]

    Силей [252] применил ЭВМ для расчета оптимальных параметров лабораторной колонны Олдершоу диаметром 31,8 мм с 12 реальными тарелками в исчерпывающей части и 10 реальными тарелками в укрепляющей части. На ЭВМ Ele tri KDF 7 (Англия) были проанализированы 280 процессов разделения. В качестве эталонной смеси использовали смесь метилциклогексан— толуол. При этом за расчетное число теоретических ступеней разделения принимали то значение, которому соответствовала минимальная погрешность. Были изучены возможные погрешности, возникающие при измерении состава смеси, при определении положения и наклона рабочей линии, а также погрешность данных по равновесию. [c.192]

    Рис. 1Х-12 иллюстрирует две из бесконечного числа линий ректификации, по которым может пойти периодический процесс для смеси МЭК — к-гептап — толуол в условиях полного возврата флегмы и при незначительной величине удерживаемой в колонне жидкости. Точка 3 соответствует начальному составу в кубе (загрузке), а линия 1 — составам на ступенях равновесия при наличии полного возврата флегмы по всей колонне. Каждая стрелка соответствует ступени разделения, так как соединяет точку для > идкости с точкой ее равновесия с паром 1 . Поскольку колонна работает при полном возврате флегмы, потоки пара и кидкостн в сечении между ступенями (тарелками) будут идентичными но составу, и поэтому соединительные линии, дающие ломаную 1 (или 2), отвечают одновременно изменению составов и жидкости и пара. [c.225]

    Средний к. п. д. реальной ступени разделения (тарелки) может быть определен из сравнения числа тарелок данной колонны и теоретического числа равновесных ступеней разделения N, необходимых для достижения такого же разделения но ключевым комнопентам  [c.330]

    Очевидно, что каждая ступень построенной ломаной заключена между кривой равновесия и рабочей линией одной теоретической тарелки колонны. Аналогично поступают и при расчете насадочных ректификационных колонн. В этом случае вводится понятие эквивалентной высоты теоретической тарелки — высота насадки, которая имеет тот же коэффициент разделения, что и одна теоретическая тарелка, т. е. участок наса-дочной колонны, на котором происходит изменение состава, соответствующее одной ступени диаграммы Мак-Кэба — Тиле, Как следует из изложенного выше, при увеличении числа тарелок концентрация низкокипящей фракции в жидкости приближается к 1007о. но некоторые бинарные смеси отличаются тем, что содержание дистиллата достигает заданной величины меньше 100%, которая не может быть превышена при ректификации даже в случае бесконечно большого числа тарелок. Такие смеси называются азеотропными. Они отличаются тем, что кривая Х = Х ) пересекает диагональ диаграммы равновесия, где кривая равновесия проходит через точку [c.456]

    Расчет числа теоретических ступеней разделения (ЧТСР) производили по известному уравнению Фенске. Зная ЧТСР, рассчитывали общий к.п.д. колонны ( I ). При рассыотрении ректификации разбавленных растворов и при малых диаметрах колонн величина является вполне надежной характеристикой разделительной способности тарелки. [c.17]

    В табл. 6.2 представлено число действительных ступеней разделения, соответствующее разной длине пути разделения Zf как функции высоты тарелки Н. При расчетах исходят из лтаксимальной величины /гТ /, равной 80, которая чаще всего встречается при хроматографическом разделении в нормальных камерах (М-камера). В ВЭТСХ можно получить высоту тарелки в пределах 10 — 15 мкм, что обеспечивает несколько тысяч ступеней разделения в зависимости от длины пути разделения. [c.121]


Смотреть страницы где упоминается термин Разделения ступени и числа тарелок: [c.136]    [c.99]    [c.99]    [c.236]    [c.110]    [c.44]    [c.101]    [c.117]    [c.394]    [c.314]    [c.122]   
Перегонка (1954) -- [ c.136 ]




ПОИСК





Смотрите так же термины и статьи:

Ступень

Ступень ступени

Число ступеней



© 2025 chem21.info Реклама на сайте