Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гептил

    Но бутаном дело не кончается. Можно соединить между собой пять атомов углерода, или шесть, или семь, или восемь, или даже семьдесят или девяносто. Химики и не пытаются придумывать новые имена для каждой новой цепочки атомов углерода. Как только дело доходит до углеводородов более чем с четырьмя атомами углерода в молекуле, они просто пользуются числительными. Беда только в том, что эти числительные — греческие. Например, углеводород с пятью атомами углерода называется пентан. Корень пент происходит от греческого слова пять . Точно так же следующие три углеводорода называются гексан, гептан и октан. Геке , гепт и окт —это корни греческих слов, означающих шесть , семь и восемь . [c.22]


    Если сжигать в автомобильном двигателе пары нормального гептана (с семью атомами углерода, вытянутыми в линейную цепь), скорость их сгорания будет слишком велика. В цилиндре будет слышен стук, поршень начнет вибрировать, и ритм его движения вверх-вниз нарушится. Это называется детонацией. При детонации снижается мощность двигателя, и он может выйти из строя. [c.25]

    В зависимости от того, как велика детонация при использовании того или иного бензина, разные его марки имеют разное октановое число. Октановое число нормального гептана равно нулю, а изооктана — ста. Октановое число любого бензина можно определить, если сравнить его горение с горением смесей нормального гептана и изооктана, взятых в разных соотношениях. Чем выше октановое число бензина, тем он лучше и дороже. [c.26]

    Совершенно аналогичные цепные реакции протекают и при фотохимическом хлорировании парафиновых углеводородов. По литературным данным [8], квантовый выход при хлорировании -гептана при освещении ультрафиолетовыми лучами равен около 7000. [c.140]

    Подъему хлористого гептила в реакционную зону препятствует стенание конденсата по колонне. Конденсат в этом случае играет роль орошения колонны. [c.198]

    З-нитро-4-гептил-бутират..... [c.332]

    З-нитро-4-гептил-изобутират. . .  [c.332]

    З-нитро-З-метил-4-гептил-бутират.  [c.332]

    Шумахер и Штауфф пришли к той же схеме реакции, которая уже приведена выше. В своих экспериментах они почти ие наблюдали образования хлористого гептила. Отсюда следует, что практически все гептильные радикалы немедленно присоединяют к себе двуокись серы, хотя существует также и возможность реакции с хлором. Из этого можио заключить, что гептильные радикалы в растворе четыреххлори- [c.367]

    Правда, для н-гептана чистая реакция изомеризации протекает в очень малой степени в первую очередь наблюдается крекинг с образованием продуктов меньшего молекулярного веса [2]. При изомеризации н-пентана получают уже значительно лучшие выходы, тогда как н-бутан может быть переведен в изобутан практически без потерь при крекинге. [c.513]

    Вместе с Торпе Шорлеммер исследовал хлорирование н-гептана [14] в тех же условиях, что и раньше. Но в дополнение ко всему он столкнулся еще с гептенами, образующимися при обработке хлор-гептанов спиртовой щелочью, и попытался выяснить их состав окислением смесью хромовой и серной кислот. Свои выводы Шорлеммер сформулировал следующим образом  [c.537]

    Кох и Рихтер подробно и тщательно исследовали изомеризацию гексана [13]. Они смогли провести при комнатной температуре соверщенно чистую изомеризацию, протекающую без всякого расщепления в присутствии катализатора — смеси хлористого алюминия и соляной кислоты с повышенным содержанием хлористого водорода (100% и больше от взятого углеводорода). Однако в случае гептана даже при столь мягких условиях изомеризацию уже нельзя было осуществить в сколько-нибудь заметной степени вследствие процессов крекинга [14]. [c.515]


    Уже отмечалось, что изомеризацию пентана и парафинов с более высоким молекулярным весом всегда сопровождают процессы крекинга, который для гептана является преобладающей реакцией. В присутствии [c.518]

    Углеводород Выход, % вес. от прореагировавшего я-гептана [c.522]

    Аналогичные результаты были получены Шорлеммером при хлорировании н-гептана. И здесь он нашел, что замещение хлором происходит только у первого и второго атомов углерода. [c.534]

    В настояшее время мы знаем, почему Шорлеммер получал всегда ошибочные результаты. При обработке ацетатом калия в ледяной уксусной кислоте продуктов хлорирования гексана или гептана олефины образуются очень легко при этом преимущественно реагируют вторичные хлориды, в которых хлор находится у третьего, четвертого, пятого и т. д. атома углерода. Хлор у второго атома углерода, с одной стороны, труднее отщепляется в виде хлористого водорода, чем хлор, смещенный к середине цепи, а с другой стороны, он легче вступает в реакцию двойного обмена. [c.538]

    Продукты гидрирования смешивают с гептаном и смесь подвергают азеотропной перегонке в колонне 4. При перегонке отгоняются метиловый спирт, гептан и вода, которые разделяются путем добавления небольшого количества щелочи. Гептан возвращается в колонну 4, а метиловый спирт поступает в колонну 5, где от него отгоняются ацеталь и ацетон, возвращающиеся в колонну 3. Остаток из низа колонны 5 подают в колонну 6, где отделяется чистый метиловый сиирт. Остаток из этой колонны возвращается в колонну 4. Высшие спирты, содержащие около 25% воды, из нижней части колонны 4 поступают в смеситель, где смешиваются с гептаном, а ббльшая часть воды выделяется и удаляется из системы. Гептано-алко-гольная смесь разгоняется затем в колонне 7, гептан и спирт отводятся через верх колонны в разделитель, где разделяются на два слоя, а вода дренируется из низа колонны 7. Находящийся в верхнем слое гептан возвращается в колонну 7, а свободные от воды спирты могут ректифицироваться или использоваться как присадки к карбюраторному топливу для уменьшения образования льда в системе питания двигателей автомобилей в зимнее время. [c.156]

    Многие продукты алкилирования ароматических имеют особое назначение, например алкилфенолы. Гексил-, гептил- и октилфенолы обладают исключительным бактерицидным действием. Гексилфенол очень эффективен против бактерий тифа, гептил- и октилфенолы сильнее действуют на стафилококки, против которых гексилфенол мало эффективен. Алкилированные фенолы могут в общем применяться как стерилизующее средство. Они лишены запаха и в отличие от фенола не раздражают кожу. Ниже приведены сравнительные данные действенности различных ал (илфенолов против стафилококков [74]. [c.227]

    Попутные гаэы, добываемые в нефтяных месторождениях в качестве побочного продукта, относятся к категории жирных природных газов, так как они содержат значительные количества высших парафиновых углеводородов, пентана, гексана и гептана. [c.22]

    Бликенштафф и Хэсс [103] лри нитровании бицикло- [2,2,1]- гептана (1,4-метиленциклогексан) снова смогли показать, что в этом случае нитруется мостнковый углерод с образованием 1-нитробицикло-[2,2,11-гептана. [c.294]

    Нагревом бромистого н-гептила при температуре кипения с металлическим натрием получают в качестве главного продукта 67% тет-радекапа одновременно получают 9 7о гептана, 3% гептана и 3% уней-козана. Удалось доказать также присутствие в реакционной смеси еще более высокомолекулярных парафинов с числом углеродных атомов, кратным семи [66]. Недавно эта реакция была проведена также [67] с бромистым изоамилом. Взаимодействием металлического натрия, взятого в виде проволоки, и бромистого иэоамила в эфирном растворе получают 2,7-ди,метилоктаи с выходом 70%. [c.62]

    Возможно также осуществить катализируемую перекисями реакцию двойного обмена водорода и хлора между парафиновыми углеводородами и полихлорированными алканами. При взаимодействии четыреххлористого углерода с гептаном в присутствии перекиси ди-трег-бутила образуются хлористый гептил и хлороформ [128]. Этим способом возможно также перевести хлор из гексахлорэтаиа в другой парафиновый углеводород. [c.196]

    В реакторе емкостью 100 мл при 190° и 4 ат, при оптимальной продолжительности реакции 18 сек. с применением нитровальной смеси, состоящей из 5 объемов углеводорода и 1 объема двуокиси азота, получают около 200 кг нитрододекана в день. В последнее время Гейзеле-ром [132а] подробно описаны результаты опытов по этому методу. Он установил выход нитросоединений при нитровании н-гептана и изооктана (2,2,4-триметил-пентан) с двуокисью азота в зависимости от объемной скорости при прочих равных условиях. [c.310]

    В качестве примера приведем описание процесса монохлорирования н-.гептана. 100 кг н-гептана нагревают до температуры кипения. Пары поднимаются через колонну в реактор, где в них через капилляры про-типотоком подается газообразный хлор. Образующийся хлористый гептил сразу конденсируется и вместе с избытком гептана стекает но колонне обратно в куб, где и остается гептан снова испаряется и возвращается в зону хлорирования. Процесс прекращают после того, как ббльшая часть гептана будет превращена таким способом в хлористый гептил. [c.198]


    Избыток н-гептана (98,4°) отгоняют, а хлористый гептил, остающийся в кубе установки, подвергают очистке ректификацией. Он кипит при 143—144° выход может достигать 96%. Таким же способом из пентана получают монохлорпентан с выходом 94—96%. [c.198]

    В 1880 г. Бельштейн и Курбатов [121] впервые обнаружили, что ири нагревании фракций кавказской нефти или гептана с азотной кислотой или со смесью азотной и серной кислот можно получить в небольших количествах нитроуглеводороды. Эти авторы получили преимущественно нитросоединения циклических углеводородов, так как нафтены нитруются легче, чем парафины, имеющие открытые цепи. Таким путем была освобождена от нафтенов фракция 95— 100° американской нефти. Факт частичного нитрования также и парафинов показывает, что при обработке гептана азотной кислотой получают небольшие количества ннтрогептана. [c.300]

    О механизме реакции сульфохлорирования имеются также фотохимические исследования Шумахера и Штауффа [И]. Они изучали реацию взаимодействия н-гептана, двуокиси серы и хлора в растворе четыреххлористого углерода и установили, что квантовый выход при 25° составляет примерно 35 000. В результате систематических исследований было найдено, что скорость образования гептилсульфохлорида пропорциональна корню из интенсивности света и первой степени концентрации гептана. Что же касается влияния концентрации двуокиси серы, то после достижения известной небольшой концентрации ее скорость образования гептансульфохлорида не зависит от дальнейшего увеличения концентрации двуокиси серы. [c.367]

    Окисление высших парафиновых углеводо юдов, например гептана, изучали Видмайер и Маусс [6]. При 143—17.3° и давлении до 67 аг первичны1ми продуктами являются перекиси, разлагающиеся затем в альдегады (ацетальдегид, пропио но-вый и масляный альдегиды), и другие соединения. [c.434]

    Еще недавно считали, что при хлорировании гексана образуется смесь 1- и 2-хлоргексана, а при хлорировании н-гептана получается лишь 1-хлоргептан. [c.533]

    Однако в большинстве случаев продукты реакции вливают в воду, отдувают водяным паром двуокись серы и циклогексан и после нейтрализации раствором едкого натра упаривают досуха. Сухой порошок содержит 85—90% натриевой соли циклогексилсульфоната и 10—15% сульфата натрия. Перекристаллизацией из горячей воды получают циклогексилсульфонат в виде блестящих чешуек. Почти к таким же результатам приводит сульфоокисление гептана, но уже метилциклогексан дает больще серной кислоты как побочного продукта. [c.487]

    Дёйствуя хлористым алюминием на кипящий гептан (температура кипения 98,4°) и непрерывно удаляя в ректификационной колонне образующиеся низкомолекулярные углеводороды, получают всего 5% изомерных гептанов, тогда как 95% исходного гептана переходит в ниже-или вышекипящие продукты (табл. 137) [25]. [c.521]

    Водород под давлением практически не оказывает влияние на процесс крекинга гептана. С чистым хлористым алюминием и в отсутствие хлористого водорода гептан подвергается автодеструктивному алкили-рованию вне зависимости от того, проводят процесс под давлением водорода или азота. В присутствии хлористого водорода и под давлением водорода протекает деструктивное гидрирование с предпочтительным образованием низкомолекулярных углеводородов. [c.521]

    Уже давно стремятся выяснить закономерности замещения водорода хлором в парафиновых углеводородах. При этом почти всегда изучали хлорирование гексана, получаемого из нефти или восстановлением маннита, и гептана, извлекаемого из нефти или масла Pinos sabiniana. Вначале думали, что хлор атакует только конец углеводородной молекулы, т. е. что замещение происходит исключительно в метильной группе. Позднее было твердо установлено, что замещается также водород у второго углеродного атома. Возможным считалось образование и других монохлоралканов, однако, поскольку экспериментальные подтверждения отсутствовали, этот взгляд был отвергнут. С другой стороны, первоначально существовало мнение, что в случае бромирования парафина продукты замещения у первичного атома углерода не образуются, а получаются исключительно вторичные бромиды. [c.533]

    Новым было для Шорлеммера то, что все гексены, полученные из продуктов хлорирования гексана, реагируют с соляной кислотой на холоду . Он решил еще раз исследовать это обстоятельство на примере хлорирования н-гептана [13] вместе с Торпе, который обнаружил этот углеводород в значительных количествах в подсочной смоле Pinus sabiniana. Результаты совместной работы Шорлеммера п Торпе были опубликованы в 1883 г, [14]. [c.536]

    В 1901 г. Михаэлю удалось опровергнуть в своем подробном исследовании К изучению процессов замещения в жирном ряду [19] выдвинутое Шорлеммером в 1877 г. утверждение [17]. Последний считал, что при бромировании н-гептана может образоваться только вторичный бромид без каких-либо следов первичного, и принимал, что на метиль-кые группы парафинов бром действует не так, как хлор. Михаэль при бромировании н-гексана обнаружил также первичный бромид. При помощи новой методики, безупречной для качественных целей, он доказал, что при этом одновременно получаются оба теоретически ожидаемых вторичных бромистых гексила. [c.537]


Смотреть страницы где упоминается термин Гептил: [c.26]    [c.304]    [c.310]    [c.332]    [c.332]    [c.332]    [c.332]    [c.332]    [c.332]    [c.332]    [c.332]    [c.519]    [c.535]    [c.539]    [c.555]    [c.557]   
Справочник Химия изд.2 (2000) -- [ c.461 ]

Курс органической химии (1979) -- [ c.72 ]

Вредные химические вещества Углеводороды Галогенпроизводные углеводоров (1990) -- [ c.0 ]

Справочник показателей качества химических реактивов Книга 1,2 (1968) -- [ c.0 ]

Курс органической и биологической химии (1952) -- [ c.279 ]

Курс органической химии (0) -- [ c.27 ]

Курс органической химии _1966 (1966) -- [ c.65 ]

Органическая химия Издание 4 (1970) -- [ c.31 ]




ПОИСК





Смотрите так же термины и статьи:

Гептиты

гепт



© 2025 chem21.info Реклама на сайте