Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Состав изменение при окислении

    В случае катализаторов-металлов установлено, что их поверхность может легко перестраиваться под воздействием реакционной среды, стремясь к минимуму свободной поверхностной энергии [12], часто наблюдается изменение поверхности металла в результате реконструктивной хемосорбции участников реакции [13, 14]. Кроме того, почти всегда изменяется состав поверхностного слоя вследствие растворения компонентов реакционной смеси. Количество поглощенных компонентов часто во много раз превышает монослойное покрытие [15]. В работах [16, 17] описано медленное изменение скорости окисления этилена на серебре, связанное, по мнению авторов, с диффузией кислорода в приповерхностный слой катализатора. Аналогичное явление обнаружено и при протекании реакции каталитического окисления водорода на пленках серебра [18]. Все эти факторы приводят к изменению теплот сорбций участников реакции на поверхности металла и энергий активации элементарных реакций и как результат — к изменениям общей каталитической активности и селективности реакции. [c.12]


    Уравнения роста трехслойной окалины на чистом металле (167) и (168) были получены на основе предположения, что величина коэффициентов диффузии компонентов окалины в различных ее слоях не зависит от небольшого изменения состава этих слоев, какое имеет место по их глубине, и остается постоянной на протяжении роста окалины, а также что средний состав различных слоев окалины и концентрация компонентов окалины тоже остаются постоянными на протяжении окисления. Нельзя доказать, что эти условия должны выполняться во всех случаях окисления бинарных сплавов. Это не позволяет независимо от кон- [c.99]

    Следует отметить, что с изменением концентрации кислорода может изменяться и состав продуктов окисления. Имеются данные, что при низкой концентрации кислорода в случае окисления трансформаторных масел преобладают реакции окислительной конденсации, что приводит к накоплению продуктов уплотнения. [c.60]

    Кинетика накопления продуктов реакции при различных температурах н выбор оптимального режима окисления рассматриваются ниже. Здесь же мы попытаемся проанализировать влияние изменения температуры на состав продуктов окисления. [c.26]

    Масло, окисленное в лабораторных условиях, и масло, которое подвергалось действию процессов старения в двигателе внутреннего сгорания, это в значительной степени разные продукты [9]. Главное различие их в том, что в масле, окисленном в лабораторной аппаратуре, существенно изменяется его групповой химический состав. При старении масла в двигателе внутреннего сгорания групповой химический состав, как правило, не претерпевает существенных изменений. Окисление в этом случае выражается в значительной степени в образовании механических примесей органического происхождения. [c.105]

    Если при изменении состава растворителя состав комплексов окисленной и восстановленной форм [c.79]

    При сжигании остаточных топлив кроме снижения образующихся отложений большое значение имеет изменение их состава, поскольку в этих отложениях присутствуют вещества, вызывающие коррозию стали. В состав этих веществ входят, в частности, ванадий и натрий первый —в основном в виде растворимых в нефти металлоорганических соединений типа порфириновых комплексов, а второй — в виде галогенидов, сульфатов и др. При термическом разложении и окислении этих сое- [c.177]

    С изменением концентрации ионов цинка в растворе изменяется состав продуктов окисления сероводорода. [c.144]

    Вторым требованием является достаточная химическая устойчивость весовой формы. Очевидно, работа затруднится, если весовая форма будет легко изменять свой состав вследствие, например, поглощения водяных паров или СО2 из воздуха, окисления (или восстановления), разложения и тому подобных процессов. Ведь при этом нарушается то соответствие состава осадка формуле, о котором говорилось выше. Наличие у осадка подобных свойств, хотя и не сделало бы определение невозможным, но потребовало бы соблюдения ряда предосторожностей, предупреждающих изменение состава осадка, и тем самым усложнило бы анализ. [c.68]


    Для повышения стойкости к высокой температуре и уменьшения трения, в эластомеры вводятся противоокислительные, антифрикционные и другие добавки. При воздействии масел и смазок эластомерные детали могут набухать или терять свою эластичность (стареть). Интенсивность старения зависит от свойств самих эластомеров и от температуры и химического состава масла. Эластомеры быстро стареют при воздействии на них продуктов окисления масла-радикалов и гидроперекисей. Отрицательное влияние на эластомеры, особенно при повышенной температуре, оказывают противозадирные (ЕР) присадки. Сера, входящая в состав таких присадок, вулканизирует резину, которая от этого твердеет и уменьшается по объему. В лучшем случае изменение объема эластомеров не должно превышать 6%, но на практике оно допускается и до 15%. [c.62]

    Наиболее важный процесс нитрования — получение широко применяемых в промышленности нитропарафинов С1—С3. При нитровании необходим избыток пропана для предотвращения взрыва, более полного использования азотной кислоты, во избежание глубокого окисления углеводорода, а также для поддержания равномерной температуры во всем объеме реактора. Процесс проводится при 430—450 С, давлении 0,7 МПа. мольном соотношении углеводорода и кислоты, равном 5 1, и времени контакта 0,5—2 с. В этих условиях образуется смесь следующего состава 25% нитрометана, 10% нитроэтана, 25% 1-нитропро-пана и 40% (масс.) 2-нитропропана. Суммарный выход нитропарафинов составляет 30—35% и 40—45% в расчете на превращенные пропан и кислоту соответственно. С изменением температуры и соотношения пропан/кислота состав продуктов реакции изменяется в широких пределах (рис. 13.5). [c.438]

    Некоторые важнейшие эксплуатационные свойства масел, в первую очередь их стабильность против окисления [35, 80], не аддитивны соответствующим свойствам компонентов, входящих в состав этих масел, и могут резко меняться даже при незначительных изменениях химического состава масла. Правильное соотношение компонентов в маслах практически определяет их эксплуатационные свойства и является основой современных методов получения масел из нефти. На этом же основано и использование специальных присадок к маслам с целью улучшения их эксплуатационных свойств. [c.64]

    Эмпирическая постоянная у определяется по уравнению, если отношение окисленной формы к восстановленной форме ионов равно единице. Если построить график в координатах плотность тока (ось ординат) — состав системы (ось абсцисс), то получаются кривые, проходящие через максимум. По мере изменения состава раствора и роста потенциала поляризации этот максимум смещается. Для анодного процесса максимум смещается в сторону увеличения коицеитрации окисляемого вещества В, для катодного процесса — в сторону роста восстанавливаемого вещества Л (рис. 178). [c.418]

    Выше был рассмотрен случай, когда пероксидные радикалы разной структуры диспропорционируют с близкими константами скорости. Однако это не всегда так. Вторичные ROa реагируют друг с другом гораздо быстрее, чем третичные. При изменении углеводородного состава окисляющейся смеси меняется состав пероксидных радикалов и соответственно суммарная скорость обрыва цепей и суммарная концентрация пероксидных радикалов. Рассмотрим вкратце инициированное окисление бинарной смеси углеводородов при следующих предположениях. 1. Концентрация Ог достаточна для того, чтобы R и R" очень быстро превращались в пероксидные радикалы. 2. Пероксидные радикалы одинаковы по своей активности в продолжении цепей, т. е. p(R 00--bR H)= p(R"00 -bR H). 3. Окисление идет с длинными цепями, так что ep,[R H][R"00.]=M[R"H][R 00>] и [R"00-J = (fe,.2[R"Hjy /Йр1 [R H] ) [R OO.] =a[R 00.]. [c.44]

    Реакционная среда влияет на катализатор, изменяя его состав, структуру, свойства [53]. Так, экспериментально установлено, что поверхность металлических катализаторов легко перестраивается под воздействием реакционной среды, стремясь к минимуму свободных поверхностных энергий [54]. Для большинства реакций каталитического окисления на окисных катализаторах в зависимости от состава реакционной смеси суш ественно меняется содержание кислорода и заряд катионов катализатора что приводит к изменению их активности и селективности [55]. [c.17]

    Оптимальный состав катализатора, обеспечивающий высокую избирательность, можно получить и другим способом катализатор находится в неподвижном состоянии, но изменяется по определенному закону состав газовой фазы на входе в реактор. Так, на опытной установке был осуществлен процесс окисления этилена на серебряном катализаторе [51], где периодически изменялась начальная концентрация этилена. При определенных частотах изменения состава было получено значительное увеличение избирательности. По данным А. В. Хасина, скорость образования [c.17]

    При напуске реакционной смеси, содержащей СО и Ог, на предварительно окисленную поверхность МнОг [35—37] переходный процесс продолжался 40 мин, а нри подаче смеси, не содержащей кислород, процесс длился 5—6 ч. По-видимому, такое удлинение переходного режима связано с постепенным изменением содержания кислорода катализатора (восстановлением). Малая наблюдаемая скорость химического превращения в опытах обеспечила большую продолжительность переходного режима в каталитическом цикле. Продолжительность соизмерима, как видим, со временем воздействия смеси на состав катализатора. Тот же вывод сделан в работах [38-42, 45, 48, 52-55, 60, 61, 64]. [c.23]


    Как мы видели выше, нефть не представляет собой однородное вещество, а является сложной смесью взаимно-растворимых углеводородов, отличающихся химическим составом, а следовательно, и физическими свойствами. Углеводороды входят в состав нефти в самых разнообразных соотношениях, поэтому физические свойства нефти не постоянны, зависят от преобладания в ней тех или иных углеводородов и могут меняться в зависимости от изменения состава (нри улетучивании легких частей, при окислении и уплотнении некоторых углеводородов и т. д.). [c.17]

    Окислительно-восстановительными реакциями называют реакции, протекающие с изменением степени окисления атомов, входящих в состав реагирующих веществ. [c.91]

    Решающее влияние на эволюцию всех сфер Земли, прежде ьсего на биосферу, оказали зарождение и последующее интенсивное развитие фотосинтеза зеленых растений, затем возникновение живых организмов. Развитие фотосинтеза приводило к выделению больших количеств свободного кислорода в гидросфере, затем в с1Тмосфере и накоплению массы живого вещества сначала в океане, потом и на суше. Поглощаемый фотосинтезом углекислый газ постепенно убывал в атмосфере Земли. Аммиак и метан практически полностью исчезли из атмосферы в результате окисления. Земная атмосфера приобретала качественно новый, близкий к современному азотно-кислородный состав с небольшим количеством углекислого газа. Подобные процессы с изменением химического состава происходили как в морской воде, так и горных породах Земли. И морской воде в результате ускорения окислительных процессов кислоты превратились в соли металлов (хлориды, сульфаты натрия, 1 алия, кальция и т.д.). С изменением pH морской воды менялись [c.42]

    Важнейшими составляющими режима обжига являются изменения температуры в разных частях печи, состав газовой среды и положение в ней зеленых заготовок. Зеленые заготовки при нагревании сильно размягчаются и легко деформируются под действием собственной нагрузки. Поэтому при загрузке электродов в обжиговую камеру их пересыпают измельченным углеродистым материалом, который называют засыпкой. Она предотвращает деформацию зеленых заготовок в процессе обжига, а также предохраняет их от окисления. В процессе обжига спрессованные заготовки постепенно нагревают до 800 - 1100°С, а затем постепенно охлаждают. [c.27]

    Состав продуктов окислительного аммонолиза метилбифенилов и характер их количественных изменений дает основание считать, что реакция протекает по двум направлениям одно из них связано с превращением метильных групп в нитрильные, второе заключается в деструктивном окислении незамещенного фенильного кольца исходных метилбифенилов. Добавки воды снижают удельный вес деструктивных процессов, и, следовательно, вода может быть использована в качестве регулятора избирательности превращений исходных метилбифенилов. [c.48]

    Как видно, изменение концентрации водяных паров в реакционной смеси оказывает заметное влияние на состав продуктов реакции. При снижении содержания водяных паров возрастает количество продуктов полного окисления. [c.64]

    Детальный анализ изменений структуры цепочек при окислении показал [4-15], что вначале выгорает неорганизованный, не успевший полностью разложиться углеводородный поверхностный слой. У большинства саж его количество не превышает 0,25% (масс.). Его природа чрезвычайно важна с точки зрения последующего взаимодействия сажи со связующим и свойств самих саж. Входящие в состав этого слоя полиядерные ароматические молекулы могут иметь алифатические боковые цепи [4-4]. [c.203]

    Из данных табл. 64 следует, что при повышении температуры реакции, т. е. при переходе из холодпопламеиной зоны (300°) через нижнюю часть верхнетемпературной области (370°) в ее верхнюю часть (400, 417 ), качественный состав продуктов окисления пропилена остается неизмеи-ным. Таким образом, принципиальных изменений в химизме реакции не происходит. Изменению подвергаются только количественные соотношения между образующимися продуктами увеличивается доля пропилена, превращающаяся в этилен, и, соответственно, уменьшается доля его, переходящая в кислородсодержащие продукты. [c.378]

    Состав продуктов окисления углеводородов обусловлен строением образующихся перекисей и исходных углеводородов (т. е. местом атаки нерекисного радикала). Образование гидроперекисей при отрыве атома водорода нероксирадикалом происходит без изменения углеродного скелета исходного углеводорода. [c.62]

    К настоящему времени природа продуктов электроокислення анилина изучена не полностью. Известно, что как в кислой, так и в щелочной средах образуются нреимуществен-но нерастворимые высокомолекулярные продукты. В состав продуктов окисления входит кислород, содержание которого значительно изменяется с изменением условий электролиза. [c.295]

    Существует два основных метода охлаждения реагирующей смеси между стадиями адиабатического процесса. С конструктивной точки зрения проще всего смешивать реагенты с байпасной частью исходной смеси. Не обязательно использовать холодное сырье можно вводить в реактор холодное инертное вещество, разбавитель нли смесь какого-либо иного состава. Например, в процессе окисления двуокиси серы используется подача холодного воздуха. В любом случае недостатком такого метода является то, что реагирующая смесь, в которой уже достигнута некоторая степень превращения, разбавляется пепрореагировавшим веществом. Альтернативным методом является охлаждение в промежуточном теплообменнике, где состав реагирующей смеси совсем или почти не меняется. Для каталитических реакций скорость процесса в отсутствие катализатора пренебрежимо мала поэтому, скажем, из реактора с неподвижным слоем газовый поток можно направлять во внешний теплообменник, а затем возвращать в следующий адиабатический слой без заметного изменения степени полноты реакции. В гомогенно-каталитическом процессе реакция может происходить и в теплообменнике, тогда теплообменник можно рассматривать как неадиабатический трубчатый реактор. [c.216]

    Различные классификации нефтей включали разные системы соподчиненных понятий. В большей части различных классификаций распределение нефтей на классы, группы, типы проводилось по химическому составу. В качестве соподчиненных понятий принимались состав и количество УВ в легких бензиновых фракциях, содержание смолисто-асфаль-теновых компонентов. В дальнейшем это были особенности структуры УВ, их индивидуальный состав и т. д. Чем глубже изучались нефти, тем больше возникало их классификаций. Позже, когда широко начали применяться геохимические исследования, появились классификации, основанные по-прежнему на химическом составе нефти. Однако изменения отдельных показателей объяснялись характером превращений нефтей в земной коре, и классифицировались нефти по этому же принципу. Число соподчиненных понятий возросло, поскольку учитывались как химические особенности состава, так и геохимические превращения нефти. Вводились также понятия о типах нефтей окисленных, фильтрованных, метаморфизо-ванных и т. д. Некоторые исследователи придавали основное значение вторичным изменениям нефтей и называли их генетическими. [c.7]

    Во время существования нефтей в земной коре они подвергаются действию различных факторов, вызывающих изменения в их свойствах и составе. Меняется в той или иной степени геохимическая характеристика нефти под воздействием тех факторов, которые связаны с локальными и глобальными геологическими процессами. Перестройка структурного плана, инверсии, приводящие в одной части региона к воздыманию отложений, в том числе и структур с залежами УВ, а в другой - к их погружению в область высоких температуры и давления, вызывает перемещение флюидов, иногда их перетоки из нижележащих горизонтов в вышележащие, потерю легких фракций и окисление в верхней части разреза и катагенные преобразования в нижней. Происходят геохимические изменения нефтей (в отличие от генетических), так как мейг4 тся их химический состав вследствие геологических причин, которые определяют также особенности формирования не только того или иного месторождения, но и зон нефтегазонакопления. [c.112]

    В промышленности уже в течение многих лет применяется окисление прямогонных нефтяных остатков, главным образом с целью изменения реологических свойств получаемых из них битумов. В процессе продувки остатков воздухом кислород взаимодействует с компонентами сырья при температуре 200—350 °С. При этом химический состав и соответственно молекулярная структура и свойства остатков изменяются. Соотношение углерод водород для асфальтенов снижается при окислении с 11 1 до 10,5 1. Для смол и масел это соотношение уменьшается, но в меньшей степени (с 8 1 до 7,7 1). Пары воды, двуокись углерода и низкомолекулярные продукты окисления (эфиры, кислоты и альдегиды) удаляются из реакционного объема вместе с продувочными газами. Целевым продуктом является окисленный битум, который существенно отличается от исходного, неокисленного сырья. При окислении изменяется его групповой состав уменьшается содержание масел и значительно возрастает количество асфальтенов, продуктов поликонденсации. Количество силикагелевых смол в некоторых случаях уменьшается, а в других несколько возрастает. [c.32]

    Также изучалось влияние циклических изменений состава исходной смеси на процесс окисления ЗОг в неподвижном слое катализатора [2]. Исследование было проведено в двухслойном каталитическом реакторе. На первый слой ванадиевого катализатора подавалась реакционная смесь, полученная после смешения ВОг и воздуха. Концентрация ЗОг составляла 12,4%. Этот слой использовался для предварительного превращения примерно 90%-ной исходной двуокиси серы в 80з и работал стационарно. Состав смеси, поступающей во второй слой, циклически изменялся в течение 13 мин подавался чистый воздух, а затем в течение этого же времени подавалась смесь, выходящая с первого слоя. Температура на входе во второй слой в течение всего периода оставалась пеиз- [c.31]

    Изменяется ситовый состав и уменьшается блеск углей. Изменение ситового состава углей в процессе их хранения имеет большое практическое значение, особенно когда они подвергаются измельчению и газификации. Кроме того, измельчение в результате окисления происходит преимущественно за счет распада крупных кусков с размерами более 50 мм. Этот распад крупных кусков способствует раскрытию новых, неокисленных поверхностей, что отражается неблагоприятно на устойчивости углей при их длительном хранении. [c.170]

    Аналогичное действие оказывают модифицирующие добавки яа температуру потери пластичности твердого парафина, где также наблюдается экстремальный характер изменения потери пластичности. Наибольший эффект достигается при введении в состав парафина 5-10 % мае. полиэтиленового воска увеличение его содержания до 20 мае. и более ухудшает пластические свойства парафина. Следует отметить, что улучшение пластических свойств парафина с введениа модифицирующих добавок (за исключением полиэтиленового воска) связано с падением его прочностных свойств. Особенно резко изменяется сопротивление твердого пар ина сжимающим и разрывным нах уз-кам (рис. 3 и 4) в случае добавления в его состав мягкого пцрафяаа и окисленного петролатума. Полиэтиленовый воск позволяет существенно повысить прочность композиции на сжатие и разрыв. [c.99]

    Ни один из этих элементов в своих соединениях не достигает степени окисления, соответствующей номеру группы. Наиболее устойчивы степени окисления +2 и Ч-З, причем для никеля, за некоторыми исключениями (например, в K [NiFe], см. также опыт 1), наиболее типична степень окисления +2 (конфигурация d ) (опыт 1). Во многих соединениях кобальта он также имеет степень окисления 4-2 (d ) степень окисления 4-3 (d ) характерна главным образом для комплексных соединений кобальта, которые имеют сходство с комплексами хрома (1П). Соединения железа в степени окисления -j-2 (d ) сходны с соединениями цинка реакции иона железа(III) (d ) во многом похожи с реакциями ионов алюминия и хрома(III). Обладающие сильным окислительным действием ферраты (VI) (d ) РеОч напоминают хроматы (VI) и мaнгaнaты(VI) ферраты имеют тот же состав, что и сульфаты, и часто им изоморфны. Реакции соединений железа, кобальта и никеля в своем больщинстве определяются склонностью этих металлов к изменению степени окисления и их способностью к комплексообразованию. [c.635]

    Систематические исследования по выяснению влияния хими ческой природы нефтяного сырья и условий окисления на состав-и свойства окисленных битумов [42—49] показали, что глубина отбора дистиллятных фракций заметно сказывается как на составе гудрона, так и на характере изменения и глубине термоокислительного превращения последнего. Детальное исследование элементного и компонентного составов тяжелых нефтяных остатков, полученных различными вариантами термической обработки, позволило выяснить характер влияния на направление и глубину превращения их в процессе производства. Полученные экспериментальные данные дали возможность составить общее представление об основных направлениях химических изменений составляющих битум компонентов в процессе его производства в заводских условиях. Чем более жесткой высокотемпературной обработке подвергаются тяжелые нефтяные остатки, тем большую роль в стадии окисления играет углеводородная часть битума. Это видно из данных, характеризующих количественное и качественное изменения в составе углеводородов. При переходе от гудрона к окисленному битуму (БН-У) содержание углеводородов снижается с 65—70 до 40—46%. При этом в окисленном битуме практически отсутствуют парафино-циклопарафиновые углеводороды, а среди ароматических углеводородов преобладают структуры, содержащие в молекуле ди- и нодиконденсированные ароматические ядра. Жидкие продукты окисления ( отдув ) битума на первой стадии окисления (до БН-1П) состоят из низкомолекулярных кислородных производных углеводородов преимущественно алифатической природы. [c.133]

    Ряд геохимических типизаций нефтей [30, З ] построен с учетом влияния на состав нефтей таких процессов, протекающих в недрах земли, как адсорбция, фильтрация, выветривание, окисление, осернение и т. д. Однако с позиций современных представлений об образовании и превращениях нефтей в недрах земли, все расмот-ренные классификации имеют определенные недостатки, так как не учитывается влияние на тип нефти состава исходного нефтематеринского вещества. В последнее время при разработке генетических классификаций серьезное внимание уделяется реликтовым углеводородам, которые, как полагают, унаследованы нефтью от нефтематеринского органического вещества, и структура которых наименее подвержена изменению во времени [23, 33—35]. К числу классификаций, учитывающих содержание реликтовых углеводородов, относятся классификации, предложенные Ботневой [23], Солодковым, Драгунской, Камьяповым [33], Петровым [34]. [c.15]

    Химическая стабильность. Этот показатель характеризует способность бензина сохранять свои свойства и состав при длительном зфанении, перекачках, транспортировании или при нагревании впускной системы двигателя. Хилшческие изменения в бензине, происходящее в условиях транспортирования или хранения, связаны с окислением входящих в его состав углеводородов. Следовательно, химическая стабильность бензинов определяется скоростью реакций окисления, которая зависит от условий процесса и строения окисляемых углеводородов. [c.23]

    В обоих случаях, т. е. холоднопламенном и верхнетемпературном окислении, 1) химическое иревращение развинается по двум направлениям — собственно окислительному и крекинговому, 2) совпадает качественный состав продуктов реакции, органические же перекиси накапливаются в примерно одинаковых и крайне малых количествах, 3) в рамках каждого из двух направлений общей реакции (собственно окисления и крекинга) количественные соотношения между соответствующими продуктами близки между собой (см. табл. 38 на стр. 242), 4) характеристические моменты реакции совпадают во времени так, если ири верхнетемпературном окислении пропана максимальная концентрация перекисей и альдегидов достигается в более поздний момент реакции, чем максимальная скорость по изменению давления, то то же наблюдается и ири холодноиламенном окислении (см. рис. 88 и 89 на стр. 233) и 5) накопление альдегидов и перекисей до максимальпых концентраций происходит ио экспоненциальному закону (см. рис. 92 и 93 па стр. 237) при этом прохождение холодного пламени не меняет значения о в уравненпи с — что вряд [c.350]


Смотреть страницы где упоминается термин Состав изменение при окислении: [c.55]    [c.138]    [c.123]    [c.129]    [c.147]    [c.283]    [c.630]    [c.420]    [c.123]    [c.241]    [c.99]   
Нефтяные битумы (1973) -- [ c.216 ]




ПОИСК





Смотрите так же термины и статьи:

Изменение состава катализаторов при окислении кокса

Изменение состава радикалов в процессе окисления

Изменение состава радикалов в ходе реакции окисления

Термическое окисление ПАН-волокна изменение химического состава волокна

Элементарные реакции продолжения цепей с участием промежуточных продуктов и изменение состава свободных радикалов в ходе реакции окисления циклогексана



© 2025 chem21.info Реклама на сайте