Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магний монокристаллы

    Монокристаллы Г. диамагнитны, магн. восприимчивость велика в направлении, перпендикулярном базисным плоскостям (-22-10- ) и незначительна в параллельном направлении ( — 0,5 -10 )- Знак коэф. Холла меняется с положительного иа отрицательный при 2100 °С- [c.608]

    Для исследований строения в-ва используют тепловые Н., энергия к-рых сравнима с энергией тепловых колебаний атомов в твердом теле. При рассеянии тепловых Н. на монокристаллах имеет место дифракция Н. (см. Дифракционные методы). Наличие у Н. магн. дипольного момента вызывает рассеяние Н. на атомах, что дает возможность изучать магн. структуру материалов (см. Нейтронография). [c.205]


    Монокристаллы слюды могут быть получены при температурах ниже 1300 °С из раствора фторфлогопитовой шихты в расплаве эвтектических смесей фторидов щелочных и щелочноземельных металлов лития, натрия, калия, кальция, магния и бария. Однако при использовании фторидов лития или натрия кристаллизуются изоморфные разновидности фторфлогопита, обладающие худшими свойствами. Растворители, включающие фториды щелочноземельных металлов, с одной стороны, и фториды калия или алюминия— с другой, неприемлемы, так как в смеси с фторфлогопитовой шихтой образуют ликвирующие расплавы, а при охлаждении — двухфазные слитки, не содержащие слюды. [c.19]

    Г) Избирательное травление отдельных кристаллов на металлографических шлифах неодинаковая скорость растворения различных граней монокристаллов магния, цинка и меди [c.54]

    Таким способом получают монокристаллы и пленки многих сульфидов, селенидов, теллуридов, галогенидов, полупроводниковых соединений А В и даже таких тугоплавких веществ, как карбиды. Метод возгонки — сублимации успешно использован для выращивания нитевидных кристаллов оксида магния ( пл = 2800°С) и карбида кремния (tnn = [c.377]

    Нп/МГц м для алюминия 0,05. .. 0,06 для магния 0,1. Поглощение определяет затухание акустических волн в аморфных твердых телах, а также в монокристаллах. [c.203]

    В виде монокристаллов определенного размера кристаллизуется очень много различных веществ, и только очень немногие из них исследовались как возможные подложки для напыленных металлов. Иногда вместо поваренной соли используют монокристалл окиси магния, так как он также расщепляется вдоль грани (100), но более термостоек, чем поваренная соль. Однако его расщепление осуществить труднее. В отношении легкости расщепления, величины поверхности, небольшой толщины и гибкости со слюдой не способен конкурировать ни один материал. Тем не менее некоторые вещества можно, как и слюду, использовать в качестве подложки и при получении эпитаксиальных пленок, например с преимущественной ориентацией граней (111) параллельно плоскости подложки в случае металлов с г. ц. к. структурой. Это гексагональные плоскости (001) графита, дисульфида молибдена и а-окиси алюминия. Для графита н дисульфида молибдена грань (001) является плоскостью спайности, но а-окись алюминия расщепить нельзя, и кристалл необходимо разрезать и полировать. Отполированная поверхность а-окиси алюминия весьма неупорядоченна и при травлении обнаруживает различные дефекты. Для получения четких картин ДМЭ необходимо неупорядоченные слои удалить ионной бомбардировкой и отжигом. Аналогичное положение, по-видимому, характерно и для других граней, получаемых разрезанием и полировкой. [c.103]


    Монокристаллы можно получить кристаллизацией из кремнеуглеродного расплава с большим избытком кремния, в котором при 1700— 1800° С Si хорошо растворяется, а при охлаждении расплава растворимость его резко падает. Кристаллизуют в графитовых тиглях, покрытых слоем карборунда. Химически чистый Si бесцветен, а промышленный с примесями железа, алюминия, магния имеет зеленый или сине-черный цвет. Донорные примеси — железо, висмут, сурьма, мышьяк, фосфор, акцепторные — металлы второй и третьей групп. Кристаллы 0-Si имеют структуру типа сфалерита, а a-Si имеет гексагональную и ромбоэдрическую решетки. Кислород воздуха при 800° С медленно окисляет Si . Водяной пар при 1300—1400° С разлагает его  [c.292]

    ПРПРОДА РЕАКТИВА ГРИНЬЯРА. Наши знания природы металлорганических соединений, включая и реактивы Гриньяра, неполны. В то время как уже осуществлен рентгеноструктурный анализ монокристаллов реактивов Гриньяра, строение этого соединения в растворе изучено недостаточно. Хотя написание формулы гриньяровского реактива в виде RMgX является общепринятым, он часто реагирует таким образом, как если бы он состоял нз алкильного карбаниона и MgX как противоиона. Невозможность выделения устойчивого реактива Гриньяра, свободного от растворителя, свидетельствует о том, что в растворе это соединение сильно сольва-тировано. Ниже представлена одна из правдоподобных структур эфирата метилмагнийиодида — частиц, существующих в эфирном растворе реактива Гриньяра. По-видимому, для стабилизации магния в реактиве Гриньяра [c.237]

    Ядро (имеющее заряд и угловой момент) и постоянный магнит-еще два источника магнитного поля, которые удобно описывать в терминах магнитных диполей (рис. 5.5). Вектор ц, использовавшийся в предыдущих главах для обозначения ядерного магнетизма, совпадает с направлением диполя стрелка указывает воображаемый Северный полюс (С). Для наших целей вполне достаточно представлять себе взаимодействие ядер как усиление или ослабление одним ядром поля В , в точке расположения другого (рис. 5.6). Результат этого усиления или ослабления называется локальным полем иа ядре, создаваемым другими ядрами. Ориентация ядерных диполей определяется внешним полем, но их относительные положения зависят от положения молекулы в целом, поэтому локальное поле на ядрах одного типа неодинаково в различных молекулах. В аморфных стеклообразных растворах или в поликристал-лнческих порошках положения отдельных молекул можно считать фиксированными, ио их ориентации не одинаковы, что приводит к образованию целого диапазона резонансных частот и уширению линий. В монокристаллах, напротив, может быть только несколько или вообще одна относительная ориентация диполей, и диполь-дипольное взаимодействие непосредственно проявляется в спектре в виде расщепления линнй, величина которого зависит от ориентации кристалла в магнитном поле. Заметьте, что это прямое магнитное взаимодействие намного превышает обычное скалярное спин-спнновое взаимодействие, но довольно часто превышает н разность химических сдвигов ядер. В результате изменение резонансной частоты может составлять много килогерц. [c.153]

    Иттрий-железный гранат YjFe2(Fe04)3- красно-бурые кристаллы рЮ Ом см точка Кюри 556 К оптически прозрачен в области 1,1-1,5 мкм. Образуется при сплавлении оксидов Y и Fe. Монокристаллы выращивают из р-ра Y2O3 (10,0% по массе) и Fe Oj (20,4%) в расплавленной смеси РЬО (36,8%), PbF, (27,1%) и В Оз (5,5%) при снижении т-ры от 1300 до 930 °С со скоростью 0,3-0,5 град/ч используют также метод Вернейля. Материал магн. запоминающих устройств, магн. сердечников в микроволновой и телевизионной аппаратуре. [c.604]

    Особые тепловые, электрич. и магн. св-ва металлических Н.К. также объясняются высоким совершенством их повчгги. Так, они обладают более высокой теплопроводностью и электрич. проводимостью, чем обычные монокристаллы. Коэрцитивная сила тонких ферромагнитных Н.к. также значительно вьппе-для Fe она достигает 40 кА/м. У относительно толстых Н.к. вблизи поверхностных дефектов часто зарождаются домены, что вызывает уменьшение коэрцитивной силы. [c.254]

    Если линии ЭПР имеют сверхтонкую структуру, обусловленную взаимод. неспаренньгх электронов с магн. ядрами в радикалах, константы этого взаимод. в 2 раза меньше, чем константы аналогичного взаимод. для радикалов, не входящих в Р. п. Кроме того, каждый неспареиный электрон взаимод. с магн. ядрами обоих радикалов, составляющих Р.П., что указывает на сильный обмен неспаренными электронами в Р. п. Наиб, полную информацию получают из спектров ЭПР монокристаллов, исследование угловых зависимостей к-рых дает главные значени.ч D и позволяет оценить взаимную ориентацию радикалов в Р.п,, их расположение относительно внеш. магн. поля. [c.159]

    Все высокотемпературные оксидные С.-монокристаллы с резко выраженной анизотропией электрич. и магн. св-в по величине уд. электрич. сопротивления относятся к полуметаллам. Так, в случае УВа2Сиз07 5 отношение электрич. сопротивления поперек и вдоль слоев составляет ок. 10 , в случае В123ГзСаСи20 ,-ок. 10 . Значение для [c.297]


    Растворимость других элементов не определена. Имеются лишь отрывочные данные о концентрациях примесей в порошкообразных люминофорах и монокристаллах халькогенидов. По данным спектрального и масс-спектрометрического анализов установлено, что щелочные металлы (Na, Li) часто встречаются в концентрациях 10" —10" ат. %. Концентрация примеси щелочноземельных металлов примерно такая же, хотя растворимость, например магния, может достигать 20 мол. % при 980° [33]. Переходные металлы и р. з. э. вводили в порошки и монокристаллы в концентрациях до 1 ат. %. Железо обычно содержится пли вводится в количествах от 10" до 10" ат. %, но известно, что его растворимость в сульфиде цинка достигает 40 мол. % (природные минералы — железистые сфалериты). Марганец вводят обычно в количестве 1%, но растворимость его составляет десятки процентов как в ZnS, так и в dS и dSe [34]. [c.35]

    Способы приготовления и свойства перхлората магния, а также возможности его применения в качестве осушителя подробно изучены Гилардом и Смитом . Были определены спектры Рамана Монокристаллов перхлората магния  [c.49]

    Приводились [177, 178] и более низкие величины энергии активации, близкие к 10—12 ккал/моль. Обычно считают, что углекислота, образующаяся одновременно с окисью этилена, частично получается в результате окисления последней, а частично независимым путем из этилена [177]. Это подтверждается при использовании в этилене [179]. Имеется сообщение [180], что углекислота может уменьшать скорость образования окиси этилена, тогда как ацетальдегид или хлорированные этилены [174, 181] увеличивают ее выход. На окисях меди и хрома окись этилена окисляется очень быстро подобные же результаты получены [182] для смеси окись магния — окись хрома. Куммер нашел [183], что на различных гранях монокристаллов серебра реакция протекает с различными начальными скоростями, однако спустя некоторое время эти скорости на различных гранях снова уравниваются, так как наблюдается некоторый процесс спекания (синтеринг). Кроме того, оказывается, что скорость реакции одинакова и на пленках, на поверхности которых первоначально находились различные грани [184]. Твигг [177] исследовал хемосорбцию реагентов на серебре и нашел, что этилен едва ли хемосорбируется, а хемосорбция кислорода — медленная и активированная. Он изучил также скорость реакции между этиленом и хемосорбированным кислородом и показал, что скорость образования окиси этилена пропорциональна доле 0о поверхности, покрытой кислородом, а скорость образования углекислоты пропорциональна 0 он считает, что скорость реакции определяется взаимодействием между хемосорбированным кислородом и молекулой этилена из физически адсорбированного слоя. Как и другие, Твигг полагает, что при нормальном окислении смеси этилена с кислородом скорость реакции лимитируется скоростью хемосорбцин кислорода. Любарский [185] измерил электропроводность пленок серебра на стеклянных нитях и показал, что хемосорбция кислорода вызывает переход электронов от серебра к хемосорбированным частицам, так что электропроводность пленки уменьшается. Однако в условиях реакции, приводящей к образованию окиси этилена, электропроводность близка к наблюдаемой для восстановленной пленки это подтверждает, что хемосорбция кислорода является медленной стадией. Наконец, некоторые изме- [c.334]

    Получены спектры комбинационного рассеяния некоторых кристаллических и растворенных аквакомнлексов [115, 128]. Немногие более старые данные приведены у ]Иатье [128]. Матье сообщает, что у растворов Mg наблюдается широкая поляризованная линия примерно при 378 а кристаллический [Mg(H20)g]S04-H20 имеет широкую поляризованную линию при 382 см . Он нашел также, что у шести кристаллических солей, о которых известно, что они содержат ион [Zn(H20)6] , широкая поляризованная линия наблюдается приблизительно при 380 см , тогда как растворы Zn имеют линии при 370 и 387 см . Лафон изучил спектры комбинационного рассеяния [115] монокристаллов [Mg(H20)g]S04-H20 и [2п(Н20)з]304-Н20 и нашел следующие смещения для соединения магния 370, 258 и 205 см , для соединения цинка 394, 239 и 200 см . Лафон предполагает, что самая высокочастотная полоса в каждом случае относится к полностью симметричному валентному колебанию металл-лиганд в соответствии с этим полоса интенсивная и поляризованная. Другие линии он относит к активным в спектре комбинационного рассеяния скелетным деформационным колебаниям, но это отнесение нельзя считать падежным. [c.348]

    АНИЗОТРОПИЯ (от греч. йгюод — неравный и троло — направление) — различие свойств материала в разных направлениях. Соответственно материалы, св-ва к-рых в разных направлениях неодинаковы, наз. анизотропными. Материалы с аморфной структурой или поликристаллы с равновероятным расположением кристаллитов и структурных элементов обычно изотропны (см. Изотропия), а материалы с закономерным внутренним строением (напр., монокристаллы), как правило, анизотропны. Анизотропны и материалы с т. н. конструктивной А.— железобетон, металлические композиционные материалы. К наиболее важным для практики св-вам, проявляющим А., относятся мех. св-ва (деформируемость и пр.), электропроводность и электрическое сопротивление, магн. св-ва (см. Магнитная анизотропия), теплопроводность, оптические св-ва (см. Оптическая анизотропия). А. мех. свойств материалов может быть начальной (исходной), т. е. существующей до их нагружения, и вторичной (деформационной), т. е. изменившейся или вновь возникшей вследствие деформации. Начальной является, напр., А. упругих св-в многих монокристаллов, вторичной — зависимость предела текучести или сопротивления разрушению от ориентации образца материала относительно направления деформационного упрочнения. В соответствии с осн. стадиями нагружения (упругой, упругопластической, разрушением) различают А. св-в, связанных с упругостью материала А. сопротивления малым пластическим деформациям А. характеристик, обусловленных большой пластической деформацией, и А. характеристик, связанных с разрушением. В первом случае напряженное состояние в пределах упругос и и вне их может сильно изменяться. Во втором и третьем случаях А. проявляется только в упругопластической области, а вне ее материал может вести себя как изотропный. Мо- [c.78]

    СО2 — 44,0. Содержит примеси магния, железа, марганца и стронция. Структура островная, сингония тригональная, вид симметрии дитри-гоиально-скалеиоэдрический. Наиболее характерны ромбоэдрические, скаденоэдрические, призматические и таблитчатые кристаллы. Спайность (см. Спайность минералов) по ромбоэдру 1011 . Характерны двойники. Плотность 2,711 г см . Твердость 3. Наряду с бесцветными в природе встречаются кристаллы, окрашенные в желтый, красновато-желтый, розовый, фиолетовый, зеленый и синеватый цвет (см. Цвет. минералов). Черта белая. Блеск (см. Блеск минералов) стеклянный. Люминесцирует в ультрафиолетовых, катодных и рентгеновских лучах, при нагреве и дроблении прозрачен от 220 до 2200 н.ч. Разлагается при т-ре 825° С легко растворим в к-тах. Достаточно распространен. Одноосный, отрицательный. Показатели преломления для длин волн 588,99 нм при т-ре 20° С щ — 1,65838 = 1,48645 Пц — — п = 0,17193. Образованно И. ш. связано в основном с вулканическими породами основного и умеренно основного состава (базальтами, ла-титами, долеритами, андезитами и их туфами и брекчиями). И. ш. встречается также в карбонатных осадочных породах, известняках, мергелях и мраморах. Монокристаллы выращивают гидротермальным синтезом. [c.510]


Смотреть страницы где упоминается термин Магний монокристаллы: [c.224]    [c.618]    [c.300]    [c.605]    [c.140]    [c.42]    [c.206]    [c.286]    [c.2164]    [c.227]    [c.135]    [c.135]    [c.73]    [c.186]    [c.618]    [c.121]    [c.50]    [c.80]    [c.86]    [c.103]    [c.232]    [c.255]    [c.283]    [c.519]    [c.546]    [c.728]    [c.739]    [c.740]   
Структура металических катализов (1978) -- [ c.103 , c.150 ]




ПОИСК





Смотрите так же термины и статьи:

Монокристалл



© 2024 chem21.info Реклама на сайте