Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Монохроматор оптический

Рис. 19. Оптическая схема универсального монохроматора УМ-2 Рис. 19. <a href="/info/196341">Оптическая схема</a> универсального монохроматора УМ-2

Рис. 74. Оптическая схема спектрофотометров (СФ-4, СФД-2, СФ-5) /-ИСТОЧНИК излучения 2-зеркало-копдепсатор Л —плоское зеркало 4 —щель монохроматора 5 — зеркальный объектив 6 — кварцевая диспергирующая призма или дифракционяая решетка 7 —кювета в — линза 5 — фотоэлемент. Рис. 74. <a href="/info/486592">Оптическая схема спектрофотометров</a> (СФ-4, СФД-2, СФ-5) /-<a href="/info/141359">ИСТОЧНИК излучения</a> 2-зеркало-копдепсатор Л —<a href="/info/870671">плоское зеркало</a> 4 —<a href="/info/889463">щель монохроматора</a> 5 — <a href="/info/1725115">зеркальный объектив</a> 6 — кварцевая <a href="/info/889538">диспергирующая призма</a> или дифракционяая решетка 7 —кювета в — линза 5 — фотоэлемент.
    Назначение и принцип действия. Регистрирующие двухлучевые спектрофотометры СФ-10, СФ-14, СФ-18 предназначены для измерения пропускания (оптической плотности) прозрачных и мутных сред и коэффициентов диффузного отражения твердых и порошкообразных веществ в видимой области спектра. Спектрофотометры состоят из осветителя, двойного призменного монохроматора, фотометра поляризационного типа, приемно-усилительной части и записывающего механизма. [c.214]

    Уравнения (4.5) и (4.6) выведены для монохроматического света, т. е. света определенной длины волны, который может быть выделен с помощью специального оптического устрой-ства — монохроматора. В фотоколориметре измерение интенсивности световых потоков производят не в монохроматическом, а в полихроматическом свете, т. е. на довольно широком участке спектра — в интервале длин волн 20—100 нм. В этом случае в уравнении (4.6) вместо молярного коэффициента светопоглощения ел можно использовать значения среднего молярного коэффициента светопоглощения (ё), зависящие от ширины полосы пропускания светофильтра (е-<ех). [c.180]

    Указанных недостатков лишены спектрофотометры, предназначенные главным образом для снятия спектров поглощения. Здесь светофильтры заменены монохроматором—оптическим устройством, позволяющим выделять узкие участки спектра. Спектрофотометры могут применяться и для абсорбционного анализа. Ниже описаны спектрофотометры СФ-4 (для ультрафиолетовой, видимой и ближней инфракрасной областей) и СФ-5 (для видимой и ближней инфракрасной областей). [c.100]

    Устанавливают силу тока на лампе, напряжение (ступень) ФЭУ, коэффициент усиления, ширину щели монохроматора. Ширину щели можно изменять, устанавливая стрелку измерительного прибора на О атомного поглощения. Определение проводят по резонансной линии кобальта 240,7 нм. Распыляют в пламя горелки эталонные растворы, раствор образца и измеряют оптическую плотность А. По результатам фотометрирования строят градуировочный график на оси ординат откладывают оптическую плотность, на оси абсцисс — концентрацию эталонных растворов (мкг/мл). По градуировочному графику находят концентрацию кобальта в исследуемой соли никеля графическим методом. [c.39]


    Марка прибора Тип монохроматора Оптическая схем Рабочий диапазон длин волн, нм Регистрация измерений [c.90]

    Расчеты показали также, что представление функции у) в виде (IV.6) допустимо и для монохроматоров, оптические системы которых обладают аберрациями [10. Иными словами, разрешающая способность любого монохроматора практически такая же, какую имел бы при отсутствии дифракции и аберраций монохроматор, у которого 62 = 61 = Ье. Поэтому в применении к монохроматорам полуширину Ье его аппаратной функции иначе называют эффективной шириной щелей. [c.128]

    Монохроматор. Оптическая схема спектрофотометра Бекмана изображена на рис. 40. Один из двух взаимозаменяемых источников излучения установлен в А. В зависимости от требуемой области спектра применяется тот или другой источник. В области от 320 до 2 ООО т используется обычная лампа накаливания с вольфрамовой нитью мощностью 32 вт. В области от 220 до 320 т[1 используется водородная разрядная трубка специальной конструкции. Для питания лампочки накаливания служит мощная батарея аккумуляторов напряжением 6 в. Водородная трубка питается [c.91]

    Марка прибора Тип монохроматора Оптическая диапазон Регистрация [c.78]

    Уровень сигнала в канале сравнения поддерживается приблизительно постоянным при помощи мотора, предназначенного для управления шириной выходной щели монохроматора. Если сигнал в канале сравнения увеличивается, то на мотор, управляющий шириной щели, подается напряжение отрицательной обратной связи, уменьшающее размер щели, и наоборот, при уменьшении сигнала щель открывается. В канале образца обычно расположены потенциометры, предназначенные для электронной регулировки линии стопроцентного пропускания как функции длин волн. Потенциометр обеспечивает электронную компенсацию разности в пропускании кювет сравнения и образца при различных длинах волн и разности в оптических путях световых пучков в каналах сравнения и образца. [c.13]

    Оптическая схема. Оптическая система приборов СФ-10, СФ-14 состоит из двух частей — спектральной (двойного монохроматора) и фотометрической. [c.216]

    Спектрофотометры данного типа имеют одинаковую оптическую-схему и несколько различаются электрическими схемами и методикой измерений. Спектрофотометры состоят из осветителя с источником излучения, монохроматора с измерительным приборам, кюветного отделения, камеры с фотоприемниками и усилителями. [c.78]

    Неотъемлемой частью любого спектрофотометра является монохроматор— устройство, позволяющее получать излучение определенной длины волны (монохроматическое излучение). В качестве источника излучения применяется специальная лампа, дающая свет, содержащий набор квантов со всевозможными частотами в некотором диапазоне, белый свет. В зависимости от выбранного диапазона используют либо водородные лампы, дающие ультрафиолетовое излучение, либо лампы накаливания, излучающие в видимой области. Пучок света фокусируют с помощью специальной оптической системы и далее пропускают его через призму или дифракционную ре- 1д шетку, после чего направляют на узкую щель, которая в зависимости от угла поворота призмы или решетки вырезает из- 5-лучение определенной длины волны. [c.173]

    В установке, работающей по принципу остановленной струи (рис. XXI. 1), растворы реагентов, находящиеся в рабочих шприцах /, под действием пружинного толкателя 2 поступают в блок смесителя 3 и по каналам последнего — в смеситель тангенциального типа 4, в котором растворы интенсивно перемешиваются за время 1 мс. Далее, раствор поступает в кварцевую трубку 5 с внутренним диаметром 2 мм (последняя — это оптическая кювета), а затем — во вспомогательный шприц 6, поршень которого, достигнув упора, резко останавливает поток и одновременно включает запуск ждущей развертки осциллографа (контакт 7). Свет от монохроматора, пройдя через кювету 5 с раствором, попадает на фотоэлектронный умножитель ФЭУ, ток которого, пропорциональный световому потоку, управляет пластинами вертикального отклонения ( ) луча осциллографа. [c.266]

    Блок-схема спектрополяриметра для изучения ДОВ показана на рис. (Vni.14). Источником света служит ксеноновая дуговая лампа высокого давления. Она обеспечивает высокоинтенсивный поток света в широком и непрерывном спектральном диапазоне от 185 до 600 нм. Большая интенсивность источника необходима, чтобы луч света эффективно прошел через последующие оптические среды. После монохроматора луч света с выделенной длиной волны направляется на кварцевый поляризатор, формирующий линейно поляризованный пучок света. [c.188]

    Принципиальная оптическая схема спектрального прибора приведена на рис. 26. От источника излучения 1 луч сложного спектрального состава, пройдя через кювету с образцом 2, поступает через входящую щель 3 в монохроматор 4, состоящий из фокусирующей оптики 5 и диспергирующей системы 6, которая может быть в виде призмы или дифракционной решетки, а затем через выходную щель 7 подается последовательно на приемник излучения 8 и регистрирующее устройство 9. Фокусирующая оптика и диспергирующая система создают в фокальной плоскости монохроматические изображения входящей щели, а совокупность этих изображений образует спектр. [c.53]


    После прохождения через монохроматор и кювету с исследуемым веществом пучок света попадает на фотоэлемент (фотоэлектронный умножитель), который измеряет его интенсивность. Практически современные приборы сразу же показывают величину оптической плотности или даже записывают ее на специальной бумаге. Меняя длину волны монохроматического света поворотом призмы или дифракционной решетки, можно записать оптическую плотность как функцию длины волны, т. е. получить спектр вещества. [c.152]

    Кроме строгого контроля за калибровкой монохроматора спектрополяриметров и дихрографа оптическая юстировка данных приборов включает в себя точную установку взаимного положения поляризатора и анализатора в спектрополяриметре и поляризатора и кристалла модулятора в дихрографе. Разъюстировка этих узлов или нарущение работы электронных блоков могут привести к появлению ложных кривых ДОВ ля КД. Одним яз обязательных коптролей данных приборов является запись спектров (ДОВ или КД соответственно) для заведомо оптически яеактивных образцов с оптической плотностью до 2,0ч-2,5. Если появляются ложные вращение ил и эффект Коттона в области потлощепня образца, то прибор необходимо дополнительно настраивать. [c.45]

    Традиционный УФ-детектор с перестраиваемой длиной волны для ВЭЖХ по существу представляет собой высокочувствительный УФ-спек-трометр с проточной микроячейкой, который регистрирует оптическую плотность раствора при данной длине волны В большинстве детекторов часть излучения направляется на второй фотодиод, расположенный в канале сравнения, для компенсации флуктуаций в работе лампы. Для повышения чувствительности измерений монохроматор можно запрофзм-мировать на автоматическое изменение длины волны в ходе анализа Однако во всех случаях в данный момент времени измерение поглощения осуществляется только в одной точке спектра. На практике часто бывает необходимо проводить измерения на различных длинах волн одновременно, когда определяемые соединения плохо разделяются хроматографически Высокочувствительная запись спектров стала реальностью с появлением детекторов на диодной матрице В таких детекторах мат >ица фотодиодов (более двухсот) постоянно регистрирует сигналы в ультрафиолетовой и видимой частях спектра (УФ-В-детекгоры), обеспечивая запись в режиме сканирования. Данные, полученные одновременно на различных длинах волн, обрабатываются с помощью компьютеров, которые вьщеляют сигнал на оптимальной длине волны, вычитают фон и осуществляют другие операции. Применение детекторов на диодной матрице обеспечивает получение аналитических данных с гораздо большей степенью достоверности [c.273]

    Величина отражения, а следовательно, и контраст спектра МНПВО зависят определенным образом от состояния поляризации (например, излучение, проходящее через спектрометры. иН-20 или UR-10, частично поляризуется). Для выделения 5- и р-компонеит поляризованного излучения применяют поляризаторы различного тина. Желательно использовать такие поляризаторы, которые не изменяют длины оптического пути и могут быть размещены неносредственно перед входной щелью монохроматоров. [c.140]

    Оптическая схема инфракрасного спектрометра ИКС-12 дана на рис. 100. Лучи от источника света / направляются плоским зеркалом 2 и вогнутым зеркалом 3 через кювету 4 на входную щель 5 монохроматора. Выходя из щели, пучок попадает на вогнутое параболическое зеркало 6. Далее лучи в виде параллельного пучка проходят через призму 7 из каменной соли или бромида калия (стекло сильно поглощает инфракрасные лучи), отражаются от плоского зеркала 8 и возвращаются на зеркало 6, от которого попадают на плоское зеркало 9 и направляются на выходную щель 0 спектрометра. С помощью плоского 11 и сферического 13 зеркал лучи фокусируются на термоэлемент 12. Поворачивая зеркало 8, можно направить на выходную щель лучи с разной длиной волны. Длину волны выходящих лучей отсчитывают на шкале барабана, связанного с механизмом поворота зеркала. [c.257]

    В качестве приемника излучения для спектров флуоресценции обычно используются фотоумножители, спектрального прибора — монохроматор, реже светофильтры. Назначение спектрального прибора — выделить интересующую нас линию из всего спектра, испускаемую возбужденным атомом или другими частицами, которым возбужденный атом передал свою энергию при соударениях или которые в свою очередь возбудились, поглотив какие-то кванты света, испущенные оптически возбужденным атомом. Попадание па фотоумножитель излучения, содержащего только длину волны спектральной линии атома определяемого элемента, уменьшает влияние постороннего излучения, которое должно рассматриваться как шум относительно определяемого сигнала. [c.134]

    Для выделения резонансной линии в атомяо-абсорбционных спектрометрах используют монохроматоры. Оптическая схема монохроматора представлена двумя зачастую симметрично расположенными объективами, в фокусах которых находятся входная и выходная щели и диспергирующее приспособление. Основными характеристиками монохроматора являются разрешающая способность и дисперсия прибора. Разрешение монохроматора должно быть достаточным для разделения линий [c.107]

    Спектрофотометр состоит из осветителя, двойного призменного монохроматора, фотометра поляризациоиноготипа, приемно-усилительного устройства и записывающего устройства. Оптическая схема прибора (рис. 32) состоит из спектральной и фотометрической частей. Свет от источника света кинопроекционной лампы / через конде[)сор 2 [c.48]

    Лучшие образцы современных УФ-спектрофотометров работают в области от 185 до 850 нм. Нижний предел определяется качеством оптической системы и интенсивностью источника излучения. Для снятия спектров ниже 200 нм оптика прибора должна быть изготовлена из специального кварца, а монохроматор и кю-ветную камеру при работе продувают сухим азотом, чтобы устранить сильное поглощение кислорода и паров воды в этой области. Длинноволновая граница прибора определяется чувствительностью детектора. В некоторых приборах ставят дополнительный сменный детектор (обычно фотосопротивление), что позволяет использовать такой спектрофотометр в ближней инфракрасной области (до 2,5 мкм). [c.13]

    От выбранных условий проведения измерений очень сильно зависит величина отнощения полезный сигнал/шум (с/щ). Величина с/ш уменьшается (на спектральной кривой появляются все более значительные беспорядочные выбросы) с ростом оптической плотности исследуемого образца, в то время как измеряемые величины а и Ае прямо пропорциональны концентрации образца, т. е. его оптической плотности. Поэтому при проведении измерений необходимо найти оптимальное соотношение между этими взаимно противоположными требованиями к условиям измерения. На качество спектров сильно влияет техническое состояние прибора а) старая ксеноновая лампа дает нестабильный пучок света, который уменьшает величину с/ш б) загрязненность оптических окон, старые, мутные зеркала в монохроматоре также уменьшают величину с/ш. На величину с/ш сильно влияет мутность образца при увеличении мутности спектры ДОВ и КД резко искажаются беспорядочными выбросами, налагающимися на спектральную кривую. Это объясняется тем, что, во-первых, при рассеянии света очень часто беспорядочно меняется плоскость поляризации падающего пучка и, во-вторых, меньшая часть света дрстигает детектора прибора. Рассеяние света частицами образца с входящими в их [c.44]

    Принципиальная оптическая схема рассматриваемых приборов приведена на рис. 29. Свет от источника 1 попадает на зеркало-кон-денсор 2, которое направляет пучок лучей на плоское зеркало 3, поворачивающее лучи на 90° и направляющее их на входную щель монохроматора 4. Зеркальный объектив 6, в фокусе которого расположена щель, направляет параллельный пучок лучей на призму 5, которая разлагает его в спектр и возвращает иа объектив 6. Луч, прошедший призму под углом, близким к углу наименьшего отклонения, попадает на выходную щель 7, расположенную под входной щелью. Поворачивая призму вокруг оси, можно получить на выходе монохроматора лучи различных длин волн. Выходящий из монохроматора пучок света проходит фильтр 8, кювету с исследуемым раствором У и попадает на фотоэлемент 10. [c.79]

    С вращением призмы 16 связано движение пера записывающего приспособления, которое через систему кулачков смещается пропорционально оптической плотности или проценту поглощения. Смещение пера записывающего приспособления происходит параллельно оси цилиндра, на который помещается градуированный бланк для записи спектра. Цилиндр вращается от мотора и его вра1цение связано с перемещением выходной щели первого монохроматора в плоскости А—А. Таким образом, угол поворота цилиндра про1юрционален длине волны монохроматического света, выходящего из выходной щели 12. С цилиндром связана шкала длин волн. Шкала длин волн линейная и градуирована через 1 нм. [c.50]

    Монохроматоры. Для разложения сложного лучистого потока на его монохроматические составляющие используют приборы, называемые монохроматорами. Их применяют во всех оптических областях спектра от вакуумного ультрафиолета до далекой инфракрасной области. Основным элементом монохроматора является диспер-гирующа5 система в виде призмы или дифракционной решетки. [c.54]

    К оптическим характеристикам монохроматора относятся линейная дисперсия, разрешающая способность и светосила. Линейная дисперсия — часть спектра в плоскости выходной щели, приходящаяся на спектральный интервал, равный 1А. Разрешающая способность монохроматора — способность различать две близко расположенные спектральные линии равной интенсивности. Призменные монохроматорь обладают малой разрешающей способно- [c.54]

    В комплекте универсального монохроматора имеется ртутио-кв1арцевая лампа СВДШ-250 с питающим устройством. Лампу СВДШ-250 устанавливают а оптической скамье монохроматора вместо источника излучения. Выходную щель заменяют трубой с окуляром. В поле зрения окуляра имеется индекс, относительно ко- [c.36]

    Спектрофотометр состоит из источника светового потока, двойного призменного монохроматора, фотометра полярнзационного типа, прнемно-усилительного и записывающего устройств. Оптическая схема прибора (рис. 24) состоит из спектральной н фотометри- [c.47]

    Оптимальные условия при регистрации ИК-спектров отражения-поглощения на стандартных спектрофотометрах достигаются с помощью специальных приставок, которые позволяют выполнять измерения без изменения оптической схемы прибора. Приставки представляют собой систему зеркал, располагаемую на специальном плато и служащую для фокусировки пучка излучения спектрофотометра на входную апертуру системы исследуемых образцов и далее, после ero многократного отражения между образцами, для перефокусировки в соответствии с оптической схемой спектрофотометра. Различают в основном два типа приставок для спектрофотометров, -имеющих пучок излучения, сфокусированный на входном окне корпуса монохроматора, и для спектрофотометров с пучком, сфокусироваипым в центре кюветного отделения. В первом случае схема приставки (рис. 7.9) включает два или три плоских зеркала, направляющих пучок на входную 7.9. Оптическая схема ириставки апертуру образцов, и ис- многократного отражения, следуемые зеркала, рас- 2 - плоские направляющие зеркала . 4 -полагаемые параллельно обпа.ць, - фото етрнчес.нй [c.151]

    Рнс. 8.16. Оптическая схема двухлучевого атомно-абсорбционного спектрофотометра 1 — источник света 2 — модуляторы 3 — атомизатор 4 — монохроматор 5 — фотодетектор 6 — усилитель 7 — отсчстное устройство. Jo к I — интенсивность излучения источника до и после прохождения пламени [c.157]


Смотреть страницы где упоминается термин Монохроматор оптический: [c.801]    [c.819]    [c.77]    [c.48]    [c.44]    [c.186]    [c.49]    [c.135]    [c.168]    [c.190]    [c.129]   
Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.619 ]




ПОИСК





Смотрите так же термины и статьи:

Монохроматор



© 2024 chem21.info Реклама на сайте