Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярное движение связь

    Важным фактором в фазовом разделении подобных систем является то, что основным механизмом движения цепей является их рептация, или переползание в трубе, образованной лабильными узлами сетки зацеплений [18, 19]. Очевидно, в тех случаях, когда лабильные узлы становятся стабильными (допустим, в результате химической сшивки), переползание цепей, связанное с требованиями фазового разделения, будет тормозиться, приводить к появлению локальных напряжений и даже станет невозможным без разрыва некоторых химических связей. С аналогичными ограничениями молекулярного движения связано торможение процессов фазового разделения в системах на основе линейных гомополимеров и блоксополимеров при стекловании. [c.183]


    ИОНОВ в двойном слое в действительности невозможно, так как помимо электростатических сил, возникающих между металлом и ионами, на последние должны действовать также силы теплового молекулярного движения. При наложении этих двух сил ионы в растворе должны распределяться относительно поверхности металла диффузно —с убывающей при удалении от иее объемной плотностью заряда, подобно тому, ка < меняется с высотой плотность воздушной атмосферы. При таком строении двойного электрического слоя для выражения связи между потенциалом и плотностью заряда уже нельзя пользоваться формулой плоского конденсатора. [c.264]

    Выберем трехмерную систему нормальных координат, фиксированную относительно сосуда. На основании нашего предполон епия о полной беспорядочности молекулярного движения можно априори сказать, что число молекул, движущихся с данной составляющей скорости вдоль оси х и вдоль осей г/ и Z, будет одинаковым. Таким образом, движение изотропно. Если определить три функции распределения P vx), P Vy) и Р (v ) так, чтобы P vx)dvx представляло собой ту долю всех молекул, которые имеют компоненту скорости в направлении х в интервале между Vx и 1 + dvx, а другие две функции связаны подобным же образом с Vy и v , то из предположения о беспорядочности движения вытекает, что эти три функции одинаковы. Далее из независимости движения молекул вытекает, что доля всех молекул с тремя компонентами скорости в интервале между Ux и Vx dvx, Vy и Vy- - dvy, и v - -dvj, будет равна произведению [c.128]

    Термодинамические функции одноатомных газов, соответствующие трем степеням свободы поступательного движения, связаны с температурой и молекулярным весом следующими уравнениями  [c.183]

    Силы взаимодействия между полярными и неполярными молекулами (индукционный эффект). В этом случае притяжение возникает в результате поляризации неполярных молекул под действием силового поля полярных молекул. Поляризация неполярных молекул происходит за счет смеш,ения внешней электронной оболочки (электронного облака) относительно атомного ядра. В масляном сырье больше всего поляризации подвержены углеводороды, в молекулах которых имеются двойные связи, т. е. ароматические и непредельные. Поляризация не. зависит от молекулярного движения и, следовательно, не зависит от температуры, [c.70]

    ПММА 120° С) проходит через максимум. Наличие этого максимума, находящегося в температурном интервале стеклования, показывает, что термическое разрушение остаточной поляризации, образовавшейся в ПММА, непосредственно связано с сегментальной формой теплового движения в полимере [65]. Известно, что в том же температурном интервале (рис. 7.14) находятся и максимумы диэлектрических и механических потерь ПММА (а-процессы). Они также связываются с сегментальной подвижностью в полимере, проявляющейся в условиях действия переменных механических и электрических полей. Расхождение в значениях энергий активации для процесса а-релаксации в ПММА, полученных методом термодеполяризации и методом диэлектрических потерь, могут быть объяснены спецификой обоих методов и особенностями молекулярного движения в полимере при температурах выше и ниже 7 с. Из данных рис. 7.15 видно, что разные физические методы позволяют фиксировать проявление одних и тех же процессов молекулярной подвижности в полимерах в различных температурно-частотных диапазонах, т. е. дают взаимодополняющую информацию. [c.199]


    Интенсивность молекулярного движения характеризуется функцией корреляции. /(т), которая связывает значения какой-либо величины в моменты времени t и t+x. Если эти значения никак н связаны, то функция корреляции обращается в нуль. Наиболее простое предположение о виде функции корреляции, для которого имеются некоторые теоретические обоснования, может быть выраженО как [c.216]

    На температурной зависимости интенсивности РТЛ могут возникнуть один или несколько максимумов, что указывает на наличие одного или нескольких типов ловушек в данном облученном веществе. Для неорганических веществ эти максимумы в общем случае не связаны с их молекулярной подвижностью. Характерной особенностью РТЛ органических веществ, в первую очередь полимеров, является то, что максимумы свечения на кривой РТЛ находятся в тех интервалах температур, где имеют место различные кинетические и структурные переходы, обусловленные размораживанием подвижности отдельных звеньев и сегментов макромолекул, а также молекулярным движением в некристаллических и кристаллических областях полимера. Интенсивность РТЛ существенно увеличивается, когда возникает подвижность отдельных частей макромолекул. При этом характер температурной зависимости интенсивности РТЛ связан с особенностями структуры полимеров и термомеханической предыстории образцов [9.1]. Для некристаллических полимеров на графиках зависимости интенсивности I излучения от температуры появляются максимумы в областях кинетических переходов. В случае кристаллических полимеров соответствующие максимумы на кривых 1 = 1(Т) появляются в областях кинетических и фазовых переходов, а также и полиморфных превращений. [c.235]

    Молекулы, как и атомы, могут находиться в различных энергетических состояниях. В отличие от атомов энергетическое с<х тояние молекул определяется не только состоянием электронов в них, но и колебательным движением атомов около равновесных положений внутри молекул и вращательным движением самих молекул. Эти движения подчиняются законам квантования, как и переход электронов в атомах. Изменение характера колебательного или вращательного движения связано с переходом молекул с одного энергетического уровня на другой. Каждому такому переходу соответствует появление линии в молекулярном спектре, как и в случае перехода электронов с одной молекулярной орбитали на другую. [c.109]

    Неисчерпаемая множественность молекулярных состояний во много раз усложняется геометрической структурой (длины связей и углы между ними) и симметрией молекул, внутримолекулярными колебаниями ядер и вращениями радикалов, а также вращениями молекулы как целого. На все это накладывается сложнейшая статистика молекулярных движений, сближений и химических взаимодействий в макроскопических скоплениях молекул, в особенности в конденсированных материальных фазах, не говоря уже о растворах и о многофазных материальных системах. [c.128]

    Из выражения (2.4) следует, что компоненты Я , и Я , вызывают релаксацию всех компонент вектора М, в то время как Я , взаимодействует только с его Мх и Му компонентами. Процессы, которые приводят к возвращению компоненты Мг к ее равновесному значению, называются Г]-процессами. С другой стороны, процессы, вызывающие возвращение компонент Мх и Му к равновесным значениям, носят название Гд-процессов. Параметры и Т , характеризующие время продольной и поперечной релаксации, связаны с молекулярным движением ядер. В твердых телах и вязких жидкостях молекулы перемещаются с относительно низкими скоростями, а для разбавленных растворов характерен большой набор скоростей движения молекул. Математически было показано, что интенсивности компонент, имеющих частоту, равную резонансной для этих крайних случаев, малы. Только в промежуточном случае (умеренно вязкие жидкости) можно ожидать, что интенсивности компонент с резонансной частотой будут наибольшими, а обмен энергией в системе спин — решетка будет наиболее эффективным. [c.59]

    Односторонность тепловых процессов объясняется молекулярной кинетической теорией вещества. Энергия, которая передается в процессе энергообмена в виде теплоты, обусловлена особым видом движения — хаотическим движением атомов молекул, в то время как остальные виды энергии связаны с направленным, упорядоченным движением структурных частиц. Однако упорядоченное движение легко может стать хаотическим как наиболее вероятным и, наоборот, упорядочение хаотического движения связано с большими трудностями. [c.53]

    Процессы, обозначенные горизонтальными стрелками на схеме, связаны с молекулярным движением (диффузией) радикалов и химическими процессами - диссоциацией молекул и рекомбинацией пары. Способы опи- [c.19]

    Параметр т, объединяет целый комплекс различных факторов, оказывающих влияние на молекулярное движение. Поэтому он должен зависеть от молекулярной массы, вязкости раствора, температуры и, возможио. других специфических факторов, таких, как водородные связи и pH раствора. Сравнивать величины различных молекул следует, полагаясь на опыт и химическую интуицию. Например, молекулы с большой массой в растворах обычно движутся медленнее легких н поэтому имеют большее Теперь нам нужно разобраться, каким образом изменения будут влиять иа времена релаксации и относи- [c.154]


    Статистическая связь между механикой обратимых молекулярных движений и необратимым поведением ансамблей определяет переход энергии из менее вероятной формы в более вероятную и одновременное возрастание энтропии. [c.241]

    Для ядра С наибольший вклад в релаксацию дают связанные с ним протоны, а модуляция диполярного взаимодействия возникает за счет молекулярного движения в жидкой фазе. Из теоретического рассмотрения следует, что скорость диполярной релаксации = Т1)°° можно связать с расстоянием между ядрами г и временем корреляции Тс с помощью уравнения [c.411]

    Прямое взаимодействие ядерных спинов не обьясняет наблюдаемых эффектов спин-спиновой связи, так как быстрое молекулярное движение в жидкостях усредняет его до нуля. В действительности взаимодействие ядерных спинов в молекуле осуществляется через электронные оболочки. В основном эта связь обусловлена взаимодействием спина первого ядра с электронами по механизму так называемого контактного взаимодействия, впервые предложенного Ферми. Контактное взаимодействие, стремящееся ориентировать спины орбитальных электронов антипараллельно ядерному спину, возможно, только если электронная плотность вероятности на ядре значительна. В свою очередь частично ориентированные электроны влияют на магнитное поле вблизи второго ядра. Кроме того, взаимодействие магнитного поля ядра с орбитальным магнитным моментом электронов приводит к появлению тока валентных электронов. Существует также прямое диполь-дипольное взаимодействие ядерных и электронных спинов. [c.507]

    Аморфные полимеры могут быть стеклообразными, жесткими или эластичными в зависимости от температуры. При низких температурах аморфные полимеры находятся в стеклообразном состоянии, которое сходно с переохлажденной жидкостью. Повышение температуры приводит к переходу из стеклообразного состояния в эластичное при температуре стеклования. При этом наблюдается резкое изменение в физических свойствах, однако изменение плотности происходит непрерывно. Ниже температуры стеклования даже аморфные полимеры приобретают твердость и хрупкость. Атомы и небольшие группы атомов колеблются около среднего положения, но части молекул не скользят одна над другой. Выше температуры стеклования аморфный полимер становится эластичным, а кристаллический — более подвижным и менее хрупким. В аморфных полимерах большие части молекул начинают скользить одна над другой и появляются характерные пластические свойства. Как для аморфных, так и для кристаллических полимеров скорость изменения плотности с температурой гораздо выше температуры стеклования Tg из-за усиления молекулярного движения. Переход от стеклообразного к эластичному состоянию обычно происходит в интервале температур около 50° С, но эта температурная область зависит от типа полимера. Если между поперечными связями и центрами клубков имеются довольно длинные участки молекулярных цепей, которые находятся в броуновском движении, то полимер проявляет эластичные свойства. [c.595]

    XI. 1.5. Механизм релаксации. Связь с молекулярным движением [c.257]

    С помощью методов спектроскопии ЯМР Н, и С показано также наличие градиента гибкости [11,18] преимуществом этого метода перед методом ЭПР, основанным на применении парамагнитных зондов, является то, что измеряются параметры самих фосфолипидных молекул. Так, методом спектроскопии ЯМР С показано, что скорость молекулярного движения возрастает по направлению от углеродных атомов глицерина к терминальным метиль-ным группам алкильных цепей. Более детальную информацию о движении цепей можно получить с помощью спектроскопии ЯМР Н, применяя дейтерированные в разных положениях алкильных цепей фосфолипиды показано, что конформации двух алкильных цепей различны ([13], см. также рис. 25.3.2) и что появление единственной ис-двойной связи в одной из алкильных цепей приводит к возникновению локальной жесткости вблизи этой связи, но увеличивает, как ни странно, общую подвижность обеих цепей [c.117]

    В большинстве полимерных резистов используются аморфные полимеры, физико-химические свойства которых определяются конформацией полимерной цепи или ее сегментов. Молекулярное движение полимерной цепи или ее сегментов зависит от температуры. При повышенных температурах возрастает число степеней свободы цепей, что может вызвать течение, и полимер ведет себя как вязкая жидкость. При понижении температуры движение сегментов полимерной цепи уменьшается, а при температуре стеклования Тс полностью прекращается. Ниже Гс полимерный материал приобретает характеристики стекла. Подобное явление наблюдается и у неорганических полимеров, например у силикатного стекла. Тс определяется подвижностью и гибкостью полимерной цепи и до некоторого предельного значения ММ полимера является характеристикой материала. Так как подвижность сегментов полимерной цепи связана со сменой конформации и зависит от времени, то конформация полимерной цепи никогда не является равновесной для достижения равновесия необходимо бесконечно большое время. [c.21]

    В жидкостях локальные магнитные поля, создаваемые соседними ядрами, полностью усредняются в результате интенсивного молекулярного движения, и линии спектра, в отличие от линий спектра твердых тел, становятся узкими. В этом случае вид спектра определяется влиянием магнитных полей, создаваемых электронными оболочками атомов, и влиянием электронов, участвующих в образовании химических связей между атомами. [c.28]

    Немаловажное значение имеет и густота пространственной сетки, так как с ростом числа узлов пространственной сетки химических связей усиливается ограничение свободного вращения сегментов цепи, и потому данная форма молекулярного движения реализуется при более высокой температуре. Пок.ч-зано [46, 47], что для эпоксидных полимеров, как и для других сетчатых полимеров, получаемых путем взаимодействия с поли-функциональным сшивающим агентом, 7 с линейно возрастает при увеличении степени сшивания. В табл. 1.13 представлены экспериментальные данные и результаты расчета 7 с некоторых немодифицированных эпоксидных полимеров. [c.31]

    Принципиальным отличием трехмерных полимеров от линейных является наличие химических узлов, практически не разрушающихся при умеренных температурах и нагрузках разрушение этих узлов ведет к разрушению полимера. Появление химических узлов делает невозможным движение всей макромолекулы или ее достаточно больших частей, т, е, существенная часть молекулярных движений, возможных в линейных полимерах, в трехмерных полностью вырождена, В трехмерных полимерах может проходить химическая релаксация, связанная с медленной перестройкой сетки химических связей под действием внешней нагрузки [I], При большой плотности узлов могут выродиться и сегментальные движения, что проявляется в исчезновении области высокоэластического состояния. При рассмотрении релаксационных процессов в эпоксидных полимерах следует также иметь в виду, что, как было показано в предыдущих разделах этой главы, структура, замороженная при переходе в стеклообразное состояние, зависит от скорости охлаждения в области Тс, механических деформаций и других факторов [38], [c.64]

    На частоту резонанса данного ядра А влияет не только электронное окружение, но и соседние магнитные ядра. Если спин соседнего магнитного ядра X направлен вдоль поЛя постоянного магнита, то он усиливает поле в месте расположения ядра А, если-против, то ослабляет его на ту же величину. Принято различать прямое и непрямое спин-спиновое взаимодействие магнитных ядер. Прямое взаимодействие передается через пространство. Оно является основной причиной уширения линий ЯМР вязких растворов и особенно твердых тел. Прямое спин-спиновое взаимодействие усредняется при быстром движении молекул в растворе или расплаве вещества. Непрямое спин-спиновое взаимодействие передается в пределах молекулы по системе связей и не усредняется при быстром молекулярном движении. [c.292]

    Все закономерности вязко-упругого поведения связаны с характером молекулярного движения в полимерах, которое в свою очередь определяется их химическим строением. Как будет видно из изложенного ниже, представление о сегментальном движении макромолекул, введенное в свое время Эй-рингом [40], оказывается недостаточным даже для описания закономерностей, характерных для всего класса полимеров в целом. Необходима дальнейшая детализация. Поэтому мы начинаем обзор с рассмотрения современных представлений о характере молекулярного движения в полимерах. [c.10]

    На основании данных метода РТЛ можно рассчитывать энергию активации йцкт молекулярного движения, так как уравнение (9.9) прямо дает связь между Уакт и Ттах, позволяя получить значение i/акт в точке максимума интенсивности высвечивания L Для получения набора значений i/акт в широком интервале температур может быть использован метод начальных скоростей. Он заключается в наблюдении начального участка реакции рекомбинации во время плавного разогрева образца исследуемого полимера. На начальном участке, где концентрация реагирующих частиц мало отличается от исходной, скорость реакции при увеличении температуры увеличивается экспоненциально. Наблюдая возрастание интенсивности РТЛ, можно измерить энергию активации, аппроксимируя каждый начальный участок экспонентой ехр[—иетт/(RT)]. [c.241]

    Гетерогенность структуры полимеров и ее энергетических характеристик на всех уровнях и термофлуктуационный статистический характер освобождения тех или иных степеней свободы молекулярного движения приводят к появлению большого числа вторичных областей релаксации, которые являются размытыми, т. е. имеют место не точки, а области переходов. Плавление кристаллов происходит в результате двух факторов энергетического (преодоление сил межмолекулярного взаимодействия) и энтропийного (повышение гибкости полимерных цепей). Поэтому в зависимости от сил межмолекулярного взаимодействия и жесткости молекулярных цепей может существенно изменяться. Так как 7 с и Тпл определяются уровнем подвижности молекулярных цепей, между ними существует связь следующего вида 0,5 7 пл< к 7 с<0,87 пл- В соотношении 7 пл = onst-7 с Для симметричных полимеров onst = 0,5, а для несимметричных (в которых атом главной цепи не содержит двух одинаковых заместителей) onst = = 0,66. [c.274]

    Изменения энтропии могут быть также связаны с молекулярными движениями внутри вещества. Молекула, состоящая из двух или нескольких атомов, может совершать движения различных типов. Молекула как целое движется в том или ином направлении, как и при движении молекул газа. Такое движение называется поступа-ТСЛ1.НЫМ. Кроме того, атомы в молекуле совершают колебательное движение, периодически сближаясь друг с другом и снова удаляясь, подобно тому как колеблются ножки камертона. На рис. 18.4 показаны колебательные движения, которые может совершать молекула воды. Кроме того, молекулы могут совершать вращательное движение подобно вращающемуся волчку. Вращательное движение молекулы воды тоже показано на рис. 18.4. Формы движения молекул соответствуют разным способам накопления энергии. При повышении температуры системы все эти виды движения повышают запасаемую энергию. [c.179]

    Возникповепне сиин-спиновой связи удобно рассматривать на примере ядер со спином 1/2, например протонов. Теория спин-спинового взаимодействия базируется на том положении, что прямое диполь-дипольное взаимодействие, которое осуществляется в твердых телах, для жидкостей и газов в результате быстрого молекулярного движения усредняется до нуля. Тонкая структура в спектрах является следствием взаимодействия ковалентно связанных ядер через электронные оболочки в молекулах. Рассмотрим гипотетическое вещество, молекула которого содержит в себе магнитные ядра типа А и В. Ядро А в поле Но имеет два состояния — с низкой (а) и высокой ((3) энергией. Это справедливо также и для ядер В. Учитывая это, можно сказать, что в зависимости от своего состояния ядро А создает увеличение или уменьщение напряженности магнитного поля, при котором наблюдается резонанс ковалентно связанного с ним ядра В. Если пренебречь небольшим различием в населенности двух уровней, можно считать, что состояния аир равновероятны и резонанс ядер В проявляется в виде двух линий одинаковой интенсивности. Расстояние между линиями характеризует энергию спин-спиновой связи и называется константой спин-спинового взаимодействия. Если повторить рассуждения, окажется, что спектр ядер А будет состоять из двух линий с такой же константой спин-спинового взаимодействия. [c.74]

    А. Эйнштейну принадлежит два толкования диффузии. Первое связано с картиной свободных блужданий. Представим себе, что частицы совершают блуждания так, что направление каждого следующего блуждания совершенно произвольно. А. Эйнштейн сравнивал такое движение частиц с движением абсолютно пьяного человека. Природа подобных блужданий различна для разных типов диффузии. Молекулы газа меняют направление движения в результате столкновений. Таким образом, в газах блуждения совпадают с основным типом молекулярного движения. В твердых елах основной вид молекулярного движения — это колебания частиц во- [c.186]

    Для анализа модели, в которой при термолизе молекулы с одновременным разрывом двух связей образуются два разделенных радикала, было исследовано [26] влияние динамики молекулярных движений на клеточный эффект при гомолизе АИБН в полипропилене. [c.210]

    Каковы же будут относительные вклады в релаксацию процессов и Ц 2 будет стимулироваться самой высокой частотой (поскольку он представляет собой сумму двух обычных переходов), самой низкой, а средней между ними. Следовательно, в области 1/т со процесс Ц 2 должен исчезать первым, а еще будет достаточно эффективным. Такую ситуацию мы уже наблюдали, когда с увеличением размера молекул происходило изменение знака ЯЭО (разд. 5.2.2). Таким образом, наша модель релаксации по механизму дшюль-дипольного взаимодействия способна хотя бы на качественном уровне объяснить наблюдаемую связь и ЯЭО с молекулярным движением. [c.156]

    Маттес и Рохов [51 на основании интерпретации данных ядерного магнитного резонанса заключили, что вращение метиленовых групп сохраняется даже до температуры жидкого азота. С повышением температуры ширина линии ядерного магнитного резонанса плавно увеличивается, что указывает на постепенное развитие молекулярного движения. По мнению Михайлова и Сажина [35], при температурах ниже температуры р-перехода диэлектрические потери являются дипольно-радикальными, т. е. связаны с тепловьм двин ением небольших участков, типа монозвеньев или радикалов. Для аморфного полиэфира при более высоких температурах дипольноэластические потери связаны с тепловым движением сегментов. [c.108]

    В [575, 579] подчеркивается, что микродинамика граничной воды может быть тесно связана с микродинамикой границ раздела, вблизи которых она формируется. К. Пакер [575] предложил модель микродинамики граничной воды, в которой разделены быстрые (/) и медленные (s) движения, связанные с подвижностью индивидуальных молекул воды (/) и переориентацией микрообластей (время корреляции тл) или конечным временем пребывания молекулы воды в пределах данной мик-рообластн [Tiat d /(4Z))] (рис. 14.1). Вклад медленных движений в спектр молекулярных движений воды может возникать вследствие заторможенной подвижности воды вблизи активных центров поверхности, анизотропии ориентационного упорядочения или анизотропии коэффициента трансляционной диффузии вблизи межфазной границы. [c.231]

    Однако не обязательно придерживаться того, что весь сдвиг возникает из-за изменения силовой постоянной связи С=0. Почти во всех исследованиях, касающихся корреляции частоты и интенсивности карбонильной группы, делаются следующие предположения 1) колебательное взаимодействие валентного колебания 0=0 с другими молекулярными движениями пренебрежимо мало 2) наблюдаемая ИК-частота колебания карбонильной группы непосредственно связана с суммой различных электрических эффектов, действующих на эту связь. Оверенд и Шерер [205] эффектно показали, что такие допущения необязательно верны и предположили, что существует невозмущенная силовая постоянная связи, которая отражает ее реальную силу. Например, галогенпроизвод-ные карбонильных соединений, наблюдаемые частоты которых лежат [c.161]

    Ориентация кристаллических полимеров сопровождается повышением кажущейся энергии активации газопроницаемости Это повышение может происходить одновременно за счет увеличения энергии активации диффузии и теплоты растворения газа в полимере, что связано с уменьшением гибкости цепных молекула аморфной части при его ориентации. Ослабление молекулярного движения с повышением степени ориентации при растяжении полимеров наблюдалось методом ЯМР в линейном полиэтиленеи в некоторых полиэфирах . [c.151]

    Измерение температуры стеклования - один из наиболее широко используемых методов определения общей гомогенности эластомерных смесей, однако он не дает информации о морфологии смесей. Гетерогенные смеси четко проявляют отдельные пики Тс для индивидуальных компонентов. Наличие одного пика Тс указывает на повышенную гомогенность (меньшие домены), но не означает обязательной совместимости. Так, невулканизованные смеси БСК-СКД характеризуются отдельными пиками Тс для каждого из каучуков как в присутствии наполнителя, так и без него, однако вулканизаты имеют одну среднюю температуру стеклования, которая ближе к Т СКД. Считается, что это связано с действием поперечных связей (затрудненность молекулярных движений), а не с изменением реальной морфологии смеси. В случае смесей меньшей гомогенности, например НК-СКД, полимерные домены достаточно велики, и поэтому индивй-дуальные температуры стеклования проявляются независимо от степени вулканизации. [c.577]

    Р-Переходы также представляют собой, как правило, сложные процессы и их отнесение еще более затруднено. Для эпоксидных смол они исследованы более подробно [1, 66], однако полученные данные не позволяют сделать общих заключений. В ряде работ [61, 66—68] не обнарун<ено зависимости температуры максимума 3-перехода от концентрации узлов сетки. В то же время, по данным работ [25, 69], увеличение плотности сшивания эпоксидного полимера за счет уменьшения молекулярной массы олигомера или функциональности амина приводит к значительному увеличению Гр, причем авторы этих работ считают возможным по изменению 7 р контролировать степень отверждения полимеров, так как этот максимум лежит в области стеклообразного состояния, и при его определении не вызывает доотверждения полимера, которое происходит при нагревании недоотвержденного полимера выше температуры стеклования. Если правильно указанное выше отнесение р-перехода к движению оксиэфирного фрагмента —О—СН2—СН (ОН) —СНг— основной цепи молекулы [67], то повышение Гр может быть связано с общим уменьщением подвижности цепи при увеличении плотности сшивания. Релаксационные 7- и р-переходы слишком сложны и мало исследованы, чтобы можно было делать какие-либо общие заключения, однако они дают информацию о молекулярном движении в стеклообразном состоянии и в значительной степени определяют характеристики эпоксидных полимеров в этой области. [c.65]

    Какой-либо дальнейшей детализации механизма ко-йфор-мационных перестроек в этой работе не содержится и лишь обсуждается вопрос о кооперативности процесса перестроек в смежных цепях, что, по мнению авторов [69], должно привести к увеличению размеров минимального участка цепи, способного к перестройке. Представления об одновременных согласованных поворотах вокруг ряда несоосных связей являются весьма важными для понимания механизма молекулярного движения. Из них следует, что конформации [c.16]


Смотреть страницы где упоминается термин Молекулярное движение связь: [c.257]    [c.34]    [c.244]    [c.16]    [c.152]    [c.147]    [c.150]    [c.150]   
ЯМР высокого разрешения макромолекул (1977) -- [ c.2 , c.20 , c.23 , c.27 ]

ЯМР высокого разрешения макромолекул (1977) -- [ c.2 , c.20 , c.23 , c.27 ]




ПОИСК







© 2024 chem21.info Реклама на сайте