Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сиджвик

    Эти допущения позволили Сиджвику вычислять эффективный атомный номер для любого комплексного соединения, причем для устойчивых мономерных соединений он оказывался равным порядковому. номеру одного из- инертных газов. Если эффективный атомный номер отличается от порядкового номера элемента, то соответствующее соединение должно обладать малой устойчивостью или, иметь полимерное строение. Действительно, в целом ряде случаев это предположение Сиджвика оправдалось. [c.247]


    ТЕОРИЯ ЛЬЮИСА. КОНЦЕПЦИЯ СИДЖВИКА ОБ ЭФФЕКТИВНОМ АТОМНОМ НОМЕРЕ [c.243]

    Представления о локализованных молекулярных орбиталях ЛМО) лежат в основе другого важного теоретического подхода к описанию геометрической формы молекул — теории отталкивания электронных пар валентных орбиталей (ОЭПВО). Идея этого подхода была высказана впервые английскими учеными Сиджвиком и Пауэллом в 1940 г. на основании анализа накопленных к тому времени экспериментальных данных о геометрической структуре молекул (около 350 молекул и ионов). В последнее время значительный вклад в развитие теории ОЭПВО внесен Гиллеспи. [c.150]

    Это соединение может быть описано по Сиджвику другим способом  [c.37]

    Основные положения теории Льюиса, относящиеся к комплексным соединениям, были развиты Сиджвиком. [c.246]

    Правило эффективного атомного номера (ЭАН) Сиджви-ка указывает на тенденцию центрального атома получить за счет комплексообразования электронную конфигурацию благородного газа. Число собственных электронов центрального атома вместе с числом электронов, полученных им от лигандов, называют эффективным атомным номером. Согласно правилу Сиджвика ЭАН должен быть равен атомному номеру ближайшего благородного газа, что и определяет координационное число комплексообразователя. Так, ион Со + имеет 24 электрона (27—3) и до 36 электронов атома криптона ему не достает 12 электронов, которые он получает, координируя около себя 6 лигандов. Правило Сиджвика имеет много исключений, но всегда соблюдается для некоторых классов комплексных соединений — карбонилов и комплексов с непредельными углеводородами. [c.137]

    В качестве грубого признака классификации ароматических углеводородов по их термической устойчивости может быть принято наличие в них тех или иных связей С—С. По Сиджвику (131) различные углеродные связи имеют следующие значения энергии (в Еал/моль)  [c.195]

    Несмотря на кажущуюся простоту и общезначимость теория Сиджвика оказалась бесплодной. [c.247]

    Изучение неорганических металлсодержащих соединений свыше ста лет было в значительной степени описательным, что в то время было характерно для всей химии вообще. Настоящий теоретический прогресс в понимании структуры и поведения неорганических соединений был невозможен вплоть до от крытия электрона в 1897 г. Это открытие дало толчок развитию электронной теории валентности, и с этого времени теоретическая неорганическая химия стала быстро развиваться. Этому способствовали главным образом работы пионеров в области химии координационных соединений — Льюиса, Косселя, Лэнгмюра, Сиджвика, Фаянса, Полинга, а также многих других ученых, распространявших и пропагандировавших их идеи. [c.230]


    Сиджвик допустил, что можно провести параллель между образованием устойчивого октета электронов у огромного количества простых соединений, устойчивой конфигурацией электронов, возникающей в результате комплексообразования у центрального иона комплекса, и числом электронов в электронной оболочке инертного газа. Эта гипотеза Сиджвика основывалась на предположении, что существуют не только обычные ковалентные связи, оба связевых электрона которых первоначально находятся у двух различных атомов, но и донорно-акцептор-н ы е, где оба связевых электрона до взаимодействия принадлежат одному и тому же атому —донору электронной пары. Связи такого типа возникают в ионе На внешней оболочке атома [c.246]

    Большая устойчивость низших степеней окисления у самых тяжелых элементов наблюдается не только в группе III у таллия, ко и в группах IV и V Б у свинца и висмута. Сиджвик заметил это в 1933 г. и в качестве объяснения предположил наличие у атомов этих элементов инертной пары электронов. Гримм и Зоммерфельд считали, что большая устойчивость низшей степени окисления у этих элементов обусловлена стабилизацией вследствие заполнения Л5-уровня. Однако ионизационные потенциалы не подтверждают этой точки зрения. [c.129]

    Н. Сиджвиком и Г. Пауэллом, а в 1957 г. усовершенствован Р. Гиллеспи и Р. Найхолмом. Развитый ими подход получил название метода отталкивания валентных электронных нар (ОВЭП) его суть сводится к утверждению, что связывающие электронные пары и неподеленные электронные пары каждого атома в молекуле должны принимать пространственное расположение, которое минимизирует отталкивание всех электронных пар, окружающих данный атом. [c.491]

    Хотя в настоящее время концепция эффективного атомного номера Сиджвика имеет не более чем историческое значение, она все же заслуживает внимания, так как все известные карбонилы ме галлов и многие их производные и родственные соединения подчиняются этому простому правилу. Правда, недавно полученное соединение V( O)o нарушает это правило одновременно интересно отметить, что его устойчивость много меньше устойчивости всех других карбонилов. [c.246]

    СВЯЗИ с накоплением очень большого отрицательного заряда на атоме металла. Хотя мы и хотели бы сохранить простоту модели Сиджвика, нужно признать, что она требует усовершенствования не только из-за возражений, на некоторые мы только что указывали, но и по ряду других причин, которые станут очевидны ниже. [c.247]

    В соответствии с правилом Сиджвика максимальное значение КЧ центрального атома /-элемента в низких степенях окисления рассчитывают как полуразность между числом 18 и числом валентных электронов центрального атома (из дробных значений полуразности еще вычитают 0,5). Установите состав следующих комплексов с монодентатными лигандами (L — некоторый нейтральный органический лиганд)  [c.202]

    Ha основании правила Сиджвика определите число лигандов (х) в следующих комплексах  [c.65]

    Дальнейшая разработка теории координационной связи была осуществлена Н. Сиджвиком (1927), развившем представления о донорно-акцепторном взаимодействии центрального атома с лигандами в комплексных соединениях. Квантово-механическая трактовка химической [c.270]

    Ковалентная связь и спин электронов. Теория Льюиса, развитая подробнее Лэнгмюром и затем Сиджвиком, не разбирает вопроса, почему электронный дублет обладает связывающими свойствами. Гейтлер и Лондон доказали, что если спины электронов двух атомов водорода параллельны, то атомы водорода отталкиваются если они антипараллельны, то связываются, т. е. связывающими свойствами обладает дублет из электронов с антипараллельными спинами. Как пример рассмотрим образование молекул р2 и 5,. У фтора в наружном квантовом слое 7 электронов он имеет [c.109]

    Согласно представлениям Н. Сиджвика, при комплексообразовании центральный ион металла заполняет свою электронную оболочку до устойчивой оболочки инертного газа. Причем при образовании связи центральный атом Со принимает от лигандов (молекул ЫНз) на свои орбитали по два электрона. В на-щем случае атом кобальта имеет 27 электронов, из них 3 электрона отданы внешнесферным атомам, а 6 молекул аммиака дают на образование связи 12 электронов. В электронной оболочке кобальта оказывается 27—3+12 = 36 электронов, т. е. столько, сколько в электронной оболочке атома криптона. Количест- [c.378]

    Суммарное число электронов Н. Сиджвик назвал эффективным атомным номером (ЭАН) данного центрального атома. Во многих случаях по величине оно равно порядковому номеру одного из инертных газов. Н. Сиджвик считал, что комплексообразователь координирует вокруг себя такое число лигандов, чтобы его эффективный атомный номер соответствовал наиболее стабильной электронной конфигурации. Это правило позволяет предсказать состав простейших координационных соединений, например карбонилов. [c.379]

    Дайте краткое изложение правила ЭАН Сиджвика и на примере покажите его действие. [c.141]


    Руководствуясь правилом Сиджвика, найдите координационное число для центрального атома в карбонилах хрома, железа и никеля. Напишите их формулы, определите тип гибридизации орбиталей и соответствующую геометрическую конфигурацию каждого комплекса. [c.141]

    Как согласуется с теорией Сиджвика состав молекулы карбонила хрома Какую геометрическую форму она имеет  [c.322]

    При каких условиях образуется карбонил железа Как теория Сиджвика определяет его формулу Является ли комплекс высоко- или низкоспиновым Какой тип гибридизации АО определяет его геометрическую форму  [c.328]

    Другой подход к теории комплексообразования был намечен Льюисом и особенно развит Сиджвиком (1927 г.). В основе этого подхода лежит допущение возможности сущеетвования донорно-акцепторной (иначе, коордииатИвной) связи. По этим представлениям, обладающие свободными электронными парами атомы имеют тенденцию использовать их для связи с другими частицами. Вместе с тем не обладающие законченной электронной конфигурацией атомы имеют тенденцию пополнять свой внешний электронный слой за счет использования чужих электронных пар. Атомы первого типа носят название доноров, второго — акцепторов. Если обе тенденции выражены достаточно сильно, то между атомами возникает связь за счет электронной napHTioHopa. Например, образование иона NH происходит за счет свободной электронной пары атома N и имеет место потому, что азот аммиака является лучшим донором, чем ион хлора. [c.410]

    Кобальт, в отличие от железа и никеля, образует двухядерный карбонил аналогично марганцу. Как это объясняет теория Сиджвика  [c.331]

    С точки зрения величин энергии связей подобное направление реакций крекинга бензо. является трудно объяснимым. По Сиджвику (131), энергия связи Саро —Сором ра ра 97,17 Еал, в то время как энергия связи Саром — Н — 101,73 Кал. С точки зрения энергии связей можно было бы ожидать, что первичной реакцией крекинга бензола явится разрыв ароматического ядра, а не отш епление водородного атома. [c.163]

    Однако часто наблюдаются отклонения от правила Сиджвика. Например, совершенно устойчивый мономерный ион [Р1(ЫНз)4 + имеет ЭАН, неравный атомному номеру следующего за платиной инертного элемента родона. При вычислении эффективного атомного номера [Со(ЫНз)5С1]С12 надо учитывать строение комплексного соединения, заряд комплексного иона, атомный номер центрального атома. Атомный номер Со равен 27. Пять молекул аммиака образуют донорно-акцепторные связи за счет свободных пар электронов. Заряд комплексного иона +2. Внутрисферная хлорогруппа предоставляет для связи один электрон. Суммируя, находим, что значение эффективного атомного номера пентамминахлорокобальтихлорида равно 27+5-2+[ —2—36, т. е. соответствует атомному номеру инертного газа аргона. Для соединения триамминового типа [Со(ЫНз)зС1з] он также равен l27-f 3 2 + 3= 3 6. Таким образом, при переходе от соединений одного типа к другому эффективный атомный номер не изменяется. [c.247]

    Основы новой теории были заложены в 1940 г., когда Сиджвик п Пауэлл сделали обзор стереохимии известных тогда неорганических соединений и заключили, что пространственное распределение связей для многовалентных атомов непосредственно связано с общим числом электронов валентного электронного уровня. Они предположили, что электронные пары, находящиеся в валентном уровне многовалентного атома, расположены всегда так, что отталкивание между ними минимально, независимо от того, являются ли они поделенными (связывающими) парами или неподе-ленными (несвязывающими или свободными) парами. В соответствии с этим предположением две пары будут располагаться линейно, три — в плоском треугольнике, четыре — тетраэдрически, пять — в виде тригональной бипирамиды и, наконец, шесть пар — октаэдрически. Оказалось, что указанные конфигурации, объясненные таким простым способом, правильно предсказывают формы молекул во всех известных соединениях непереходных элементов, для которых все электронные пары валентного уровня соединены с идентичными атомами или группами. Если одна или более электронных пар не поделены пли если имеется два или более разных видов присоединенных атомов, то следует ожидать отклонений т геометрически правильных структур. [c.198]

    Прежде чем обсуждать некоторые теории координационной связи следует отметить, что теория — не более чем приближение к дей ствительности. И если бывают из нее исключения, этого еще не достаточно, чтобы обесценить всю теорию. Более вероятно, что исключения указывают на наше неумение давать им удовлетворительные объяснения. Обычно нужно только видоизменять тео-шю таким образом, чтобы эти исключения были ею охвачены Лримером может служить современное состояние метода валент ных связей. Часто одни и те же явления могут быть объяснены двумя или даже более теориями, и тогда мы должны искать более фундаментальную концепцию, общую для обеих теорий, которая будет по всей вероятности лучшим приближением к действительности. Такое положение существует сейчас и с теориями кристаллического поля, и молекулярных орбиталей в их применении к комплексам. На их основе вырос в настоящее время более универ сальный метод, известный как теория поля лигандов. Электронная теория валентности, сформулированная Льюисом в 1916 г. и распространенная на многие системы Лэнгмюром е 1919 г. и другими авторами в течение последующего десятилетия дала химикам возможность выразить вернеровское понятие валентности с помощью электронных представлений. Основная за слуга в использовании новой теории валентности принадлежит Сиджвику и Лаури . Главные валентности Вернера были интерпретированы как результат электровалентности, или пере коса электрона, а побочные рассматривали как проявление ковалентности, или обобщения электронных пар. Главная валент ность может быть, а может и не быть ионной. Так, если во внутрен пей координационной сфере находится отрицательный ион, на пример ион хлора в нитрате хлорпентаамминохрома (И1) Сг(ЫНз)цС1](ЫОз)з, он может быть связан с атомом металла как главной, так и побочной валентностями. В данном случае ион хлора потерял свой ионный характер. Только нитрат-ионы насы щают главную валентность и поэтому сохраняют свой ионный рактер. [c.245]

    Сиджвик принял идеи Льюиса о двухэлектронной ковалентной связи между двумя атомами в молекуле и ввел понятие координа ционной связи для случая, когда оба электрона, образующие связь [c.245]

    Далее, Сиджвик предположил, что ион металла стремится прини мать электронные пары до тех пор, пока не получит такое число электронов, что атом металла в образованном комплексном ионе будет иметь эффективный атомный номер (ЭАН), равный поряд ковому номеру следующего ближайшего инертного газа . Это можно проиллюстрировать на примере хлорида гексамминопла-тины (IV) [Р1(ННз)в С1,  [c.246]

    Метод валентных связей 1редполагает, что связь осуществляется за счет спаривания двух электронов, принадлежащих двум разным атомам, при этом возникает ковалентная связь. В комплексных соединениях, как показал Н. Сиджвик, происходит образование обычных ковалентных связей по этому механизму. Это главная валентность. Образуются также связи по донорно-акцепторному механизму, когда оба составляющих ее электрона принадлежат одному и тому же атому. Так образуется побочная координационная связь. Донорами могут быть атомы азота, кислорода, фосфора, серы. [c.378]

    Развитие представлений о природе комплексных соединений тесно связано с созданием и развитием общей теории химической связи. Уже в 20-х годах появились первые работы, применявшие идеи ионной и ковалентной связи к комплексным соединениям. Так, Косселю и Магнусу принадлежит большая заслуга в разработке электростатических представлений, а приложение идеи о парноэлектронной связи разрабатывалось в работах Сиджвика. В дальнейшем было разработано три квантовомеханических метода МВС, теория кристаллического поля (ТКП) и ММО. Ни один из этих методов не предназначался для объяснения связи только в комплексных соединениях, но и в этой области применение их оказалось весьма успешным. Они не являются противоположными друг другу. Наоборот, во многих отношениях они дополняют друг друга, трактуя одни и те же вопросы с различных точек зрения, и зачастую приводят к идентичным результатам. [c.160]


Смотреть страницы где упоминается термин Сиджвик: [c.445]    [c.448]    [c.369]    [c.12]    [c.245]    [c.54]    [c.133]    [c.105]    [c.105]   
Водородная связь (1964) -- [ c.55 , c.147 , c.206 ]

Основные начала органической химии том 1 (1963) -- [ c.104 ]

Теория резонанса (1948) -- [ c.59 , c.166 , c.186 , c.201 , c.309 ]

Электронная теория кислот и оснований (1950) -- [ c.27 , c.62 , c.77 ]

Успехи общей химии (1941) -- [ c.170 , c.171 , c.232 ]

Теоретические основы общей химии (1978) -- [ c.183 ]

Неорганическая химия (1994) -- [ c.365 ]

Новые воззрения в органической химии (1960) -- [ c.487 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.410 ]

Эволюция основных теоретических проблем химии (1971) -- [ c.276 ]

Основы синтеза промежуточных продуктов и красителей Издание 4 (1955) -- [ c.58 ]

Теоретические основы органической химии Том 2 (1958) -- [ c.82 , c.262 , c.378 , c.542 ]




ПОИСК





Смотрите так же термины и статьи:

Координационная связь модель Сиджвика

Расчет длин по Сиджвику

Связь модель Сиджвика

Сиджвик Sidgwik

Сиджвик Природа связей

Сиджвик Природа связей химических соединениях

Сиджвик неполярная связь

Сиджвика модель

Сиджвика модель координационной связ

Сиджвика модель электростатическая

Сиджвика правило

Сиджвика правило определения состава комплекса

Сиджвика правило эффективного атомного номера

Сиджвика теория

Теория Льюиса. Концепция Сиджвика об эффективном атомном номере



© 2025 chem21.info Реклама на сайте