Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Классификация ароматических углеводородов

    Химический состав битумов чрезвычайно разнообразен. Фактически это смесь метановых, нафтеновых, ароматических углеводородов и кислородных, сернистых и азотистых органических соединений. Классификация нефтяных бит мов производится, исходя из их элементарного состава (табл. 36). [c.114]

    В качестве грубого признака классификации ароматических углеводородов по их термической устойчивости может быть принято наличие в них тех или иных связей С—С. По Сиджвику (131) различные углеродные связи имеют следующие значения энергии (в Еал/моль)  [c.195]


    Позже Пилат с сотрудниками [27] разработал эмпирические методы классификации сульфокислот, основанные на их различной растворимости. При гидролитическом десульфировании растворимых в воде сульфокислот были получены преимущественно ароматические углеводороды, содержащие конденсированные циклические системы, но без длинных боковых цепей. [c.537]

    Вторую, не менее важную группу ароматических углеводородов, особенно характерную для нефтей, составляют углеводороды смешанного типа строения, т. е. углеводороды, содержащие как ароматические, так и нафтеновые кольца и, конечно, алифатические заместители. Число гомологических серий для этих соединений значительно больше, чем для углеводородов первой группы, так как возможны различные вариации в сочетании ароматических и нафтеновых колец. Обычно выделяют следующие группы, различающиеся числом ароматических колец в молекуле (классификация пригодна и для углеводородов первой группы). [c.149]

    Ароматические соединения обладают свойствами, отличными от свойств алициклических соединений, и составляют особую ветвь в схеме классификации на с. 93. Наиболее распространенным ароматическим углеводородом является бензол . Термин ароматические прилагают ко всем устойчивым циклическим соединениям, имеющим делокализованную электронную систему л-связей . Большинство из них состоит из шестизвенных колец, однако в общем число звеньев может варьировать от трех [c.110]

    Обычные неводные органические растворители относятся к молекулярным жидкостям и в зависимости от их химического строения принадлежат к одному из следующих классов органических соединений алифатические и ароматические углеводороды и их галоген- и нитропроизводные, спирты, карбоновые кислоты, сложные эфиры карбоновых кислот, простые эфиры, кетоны, альдегиды, амины, нитрилы, незамещенные и замещенные амиды, сульфоксиды и сульфоны (см. приложение, табл. АЛ). Классификация растворителей в соответствии с их химическим строением позволяет сделать некоторые выводы качественного характера, в общем случае сводящиеся к старому правилу подобное растворяется в подобном . Обычно соединение легко растворяется в растворителе, имеющем такие же или [c.87]

    По другой классификации в качестве определяющих признаков приняты плотность нефти, содержание в ней серы и отношение содержания алканов и ароматических углеводородов к циклоалканам. По плотности нефти разделены на 4 группы (легкие, средние, тяжелые и очень тяжелые), а по содержанию серы - на 3 (малосернистые, сернистые и высокосернистые). В каждой из этих групп химический состав учитывается упомянутыми выше соотношениями количеств фупп углеводородов. [c.227]


    Химические свойства веществ проявляются в химических реакциях. Их классификация зависит от классификации самих веществ, от их состава и строения. Различают свойства веществ неорганических (металлы, неметаллы, оксиды, гидроксиды и пр.) и органических (предельные, непредельные, ароматические углеводороды, кислородсодержащие, азотсодержащие). [c.260]

    В советской нефтяной литературе принята предложенная Сахановым химическая классификация нефтей, согласно которой они делятся на типы яо относительному содержанию в них метановых, нафтеновых и ароматических углеводородов. Таким образом получаются следующие шесть основных типов нефтей  [c.29]

    По классификации Киселева [21], рассмотренные нами модифицированные адсорбенты можно отнести к двум группам. Первая группа — адсорбенты с химически насыщенной поверхностью — кремнеземы, модифицированные фтором, алкильными и алифатическими группами. Поверхность таких адсорбентов неспецифически взаимодействует не только с молекулами неполярных веществ, но также с молекулами, имеющими я-связи (ароматические углеводороды, азот, ненасыщенные углеводороды) и с молекулами, имеющими свободные электронные пары (вода, спирты, эфиры и др.). Так как доля дисперсионной компоненты взаимодействия в адсорбции полярных молекул мала, то все они на таких поверхностях адсорбируются плохо. В связи с тем, что органические радикалы отодвигают молекулы адсорбата от силоксановых групп кремнезема, являющихся основными центрами дисперсионного взаимодействия, то адсорбция молекул, адсорбирующихся только по дисперсионному механизму на таких поверхностях, также меньше, чем на гидроксилированном силикагеле. [c.163]

    Структурно-групповой состав характеризует представительность гомологических рядов соединений, наиболее типичных для объекта Это играет важную роль, например, при классификации нефтей и нефтепродуктов, которая основывается на относительном содержании алканов, нафтеновых и ароматических углеводородов [c.13]

    Хотя свойства индивидуальных углеводородов и не являются одинаковыми, они довольно близки у углеводородов одного и того же ряда при небольшом различии молекулярного веса. В связи с этим нефти различают но содержанию фракций, выкипающих при различных температурах, по групповому содержанию парафиновых, нафтеновых и ароматических углеводородов, по содержанию нормальных и изомерных углеводородов, по среднему числу колец в молекуле и др. Поэтому подразделяя нефти согласно той или иной классификации на несколько типов, дающих общую их характеристику, необходимо учитывать, что нефти, относящиеся к одному и тому же типу, не являются идентичными но составу. В каждой, например, парафино-нафтеновой или иной нефти имеются свои отличия по содержанию и соотношению индивидуальных углеводородных и гетероатомных соединений. Ниже приводятся сведения по общей характеристике состава нефтей некоторых нефтегазоносных бассейнов. [c.12]

    Термин ароматические углеводороды не всегда правильно применяется в литературе. Многие исследователи химического состава нефтей обозначают как ароматическую порцию нефти все компоненты, имеющие ароматическую и нафтено-ароматическую (гибридную) структуры. Для точной классификации компонентов нефти, не вызывающей смешение понятий, к ароматической группе следует относить лишь такие углеводороды, которые имеют только ароматические циклы и алифатические радикалы в виде боковых цепей или мостиковых соединений. [c.60]

    Разделение смол селективными растворителями не является удовлетворительным методом их химической классификации. Элементарные составы разделенных этим способом фракций смол мало отличаются друг от друга. Полученные таким путем нейтральные смолы образуют с нефтепродуктами истинные растворы. Асфальтены дают в этих же условиях коллоидные растворы или суспензии. Они лиофильны по отношению к ароматическим углеводородам и лиофобны по отношению к углеводородам алифатического строения. Степень дисперсности асфальтенов зависит от химического состава углеводородной смеси. [c.150]

    Если остановиться на приведенной выше в п, 1 классификации типов связей и не принимать во внимание более тонких различий в свойствах отдельных связей С — С и СН в ароматических углеводородах, то выражение для энергии образования или теплот сгорания ароматических углеводородов из атомов будет содержать три постоянные (см- 3 главы П)  [c.256]

    В этой работе мы проведем подробное сравнение электронных спектров, предсказанных по методам Хюккеля и Паризера — Парра, с экспериментальными данными, а также сравнение методов Хюккеля и Паризера — Парра между собой. Может показаться, что метод Хюккеля, как более простой, должен всегда давать менее точные результаты. Это, однако, неверно, что видно, например, из сравнения энергии возбуждения самой длинноволновой полосы интенсивного синглет-синглетного перехода в УФ-спек-трах ненасыщенных молекул и соответствующей теоретической величины, вычисленной по методу Хюккеля [2, 3]. Экспериментальные величины энергий возбуждения определялись по положению так называемой /г-полосы по классификации Клара [4]. Идентификация этой полосы сама по себе является сложной задачей и требует должного внимания. Теоретические величины энергий возбуждения вычислялись по методу Хюккеля как разности энергий между высшим из запятых и низшим из незанятых одноэлектронных уровней. Геометрию молекулы при этом рассматривали упрощенно, принимая все длины связей одинаковыми. Внутри каждого класса углеводородов, папример ароматических углеводородов, линейных полиенов и ароматических производных [c.176]


    Так называются обычно бутадиенстирольные каучуки, пластифицированные различными минеральными маслами. Опубликован обзор работ по классификации масел для масляных каучуков и свойствам наполненного маслом бутадиенстирольного полимера [197, 1035]. В ряде работ исследованы способы получения и свойства масляных каучуков [1036—1052]. Клаус с сотр. [1041, 1046] занимались изучением технических свойств масляных каучуков. Они применяли следующие масла нафтеновые (вазелиновое медицинское), нафтеноароматические с содержанием 30—48% ароматических веществ (соляровое, веретенное, автол-18, цилиндровое-2), ароматические (ЦИАТИМ с № 1 по № 7), высококонденсированные ароматические углеводороды (зеленое масло, нафтолен, гудрон масляный). Установлено, что лучшее совмещение с каучуком дают низковязкие масла и масла с большим содержанием ароматических углеводородов. Вулканизаты с 30 в. ч. масла на 100 в.ч. каучука, по [c.662]

    По приведенной классификации алифатические и ароматические углеводороды (бензин, уайт-спирит, предельные и непредельные углеводородные газы, ароматические продукты), спирты, эфиры являются нервными ядами, оказывающими наркотическое действие и поражающими главным образом центральную нервную систему. Они повышают возбудимость, вызывают головокружение, сердцебиение, общую слабость организма, нередко заканчивающуюся потерей сознания. Признаками отравления нервными ядами являются сухость во рту, тошнота, головная боль, дрожание рук, век, мышечные судороги. При длительном воздействии на организм нервных ядов могут возникнуть хронические отравления, сопровождающиеся тяжелым нервным расстройством. Жидкие углеводороды, попадая на кожу, обезжиривают и сушат ее, вызывают различные кожные заболевания (экземы, дерматиты). [c.235]

    Уменьшение практического значения классификации, основанной па температурах кипения и молекулярном весе, сопровождается увеличением важности химического состава как критерия для классификации нефтей. В последующих главах показан рост значения химических так называемых вторичных процессов в современной нефтепереработке, т. е. постепенное превращение нефтепереработки в отрасль химической промышленности. Каталитический крекинг дал возможность не только получать громадные количества бензина, необходимые для американского рынка, но и повысить октановые числа этого бензина до уровня, практически недостижимого 20 лет назад. Каталитический риформинг находит такое же широкое применение, как и каталитический крекинг. Усовершенствование процессов экстракции дополнительно облегчает получение необходимых относительных выходов различных фракций из нефтей, характеризующихся любым относительным содержанием этих фракций (разделяемых по молекулярному весу или химическому строению). Поэтому, хотя химический состав нефтей всегда оказывал влияние на намечаемое их использование и цены, никогда раньше он не имел столь важного значения, как сейчас. Для проектирования нефтеперерабатывающего завода или разработки схемы переработки нефти на действующем заводе необходимо достаточно точно знать во всех многочисленных подробностях химический состав данной нефти. Говорить просто о нефтях парафинового или нафтенового основания далеко не достаточно. Необходимо знать относительное содержание парафиновых, нафтеновых и ароматических компонентов во всех фракциях, выделяемых из данной пефти. Необходимо знать, имеют ли парафиновые компоненты нормальное или разветвленное строение, содержат ли нафтеновые углеводороды пяти- или шестичленные кольца, являются ли ароматические углеводороды MOHO- или полициклическими. Необходимо знать не только углеводородный состав, но достаточно точно также природу и относительное содержание второстепенных компонентов. Помимо углерода и водорода, нефти содержат ряд [c.44]

    Если классифицировать нефти по их фракциям, то целесообразно применять для сравнения столько фракций, сколько окажется необходимым. Идея Лена и Гартона была развита Ван-Несом и Ван-Вестеном [391)1, применявшими кривую истинных температур кипения для всей нефти в целом и последующий анализ каждой фракции с целью выяснения распределения углерода в нафтеновых, парафиновых и ароматических углеводородах. Получающиеся таким образом результаты авторы назвали спектром распределения углерода, имеющим большое значение для переработки нефти. Эта система имеет ограниченное значение при характеристике нефтей по классам, но может быть весьма полезной, так как позволяет дифференцировать различные нефти. Однако она с успехом может быть использована для ключевых фракций по классификации Лена и Гартона. [c.52]

    Результаты испытаний позволили рекомендовать катализатор ТК-908 для производства дизельного топлива класса 1 (по шведской классификации) из малосернистого сырья. Эксплуатация этого катализатора в течение двух лет подтвердила его высокую стабильность. Содержацие ароматических углеводородов в продукте не превышало 5% при содержании их в сырье 17-19%. Предварительная обработка сырья на высокоактивном NiMo-катализаторе ТК-525 способствовала удалению би- и трициклических соединений. [c.40]

    Указанная классификация не включает асфальтовые нефти, т. е. нефти, богатые асфальтами или битумами, которые по своему строению обычно родственны ароматическим углеводородам. Практически нефти представляют всегда смеси углеводородов, относящихся не менее чем к двум из этих четырех основных типов. В табл. 3 приведена классификация нефтей, предложенная Саханеном [1]. [c.26]

    НеобхоДИ о отметить, что химическая классификация нефтей имеет чисто условный характер, так как комбинации различных углеводородных компонентов настолько разнообразны, что зачастую бывает трудно определить, к какому типу может быть отнесена рассматриваемая нефть. Исследованиями установлено, что чем больше нефть содержит ароматических углеводородов, тем лучше и быстрее образуются в нефтяных остатках при перегонке и окислении важней1Иие составные компоненты битумо-асфальто-смолистые вещества. [c.26]

    Для оценки возможности получения из конденсатов отдель-зых марок моторных топлив установлена их единая технологическая классификация по отраслевому стандарту ОСТ 51.56—г79 ([158]. Согласно этой классификации конденсаты ана-тизируются по следующим показателям давление насыщен-зых паров, содержание серы, фракционный состав, содержа-зие ароматических углеводородов и парафинов, температура застывания. [c.221]

    Полученные результаты определения норовой характеристики по адсорбции ароматических углеводородов из раствора [8], а также данные Быкова [4] по адсорбции газов и паров показали, что опоки относятся к разнородно пористым адсорбентам с преобладанием пор большего диаметра (по классификации Киселева), что обусловливает их высокую обессмо-ливающую способность. [c.158]

    По классификации Киселева [382], рассмотренные нами химически модифицированные адсорбенты можно отнести к двум группам. К первой принадлежат силикагели с химически насыщенной поверхностью — модифицированные фтором, алкильными и алифатическими группами. Поверхность таких адсорбентов неспецифически взаимодействует не только с молекулами, имеющими л-связи (ароматические углеводороды, азот, ненасыщенные углеводороды), но и с молекулами, имеющими свободные электронные пары (вода, спирты, эфиры и др.). Так как доля дисперсионной компоненты взаимодействия в адсорбции полярных молекул [c.177]

    Молекулы углеводородов состоят только из углерода и водорода. Углеводороды наиболее многочисленны среди других классов органических соединений. Их подразделяют на алифатические и ароматические углеводороды. Эта классификация сложилась в XIX в., когда органические соединения получали преимущественно из природных источников. Часть из них выделяли из жиров и масел такие соединения называли жирными, или алифатическими (от греческого слова а1ИрНаг - жир). Другие соединения отличались особым запахом, их назвали ароматическими. В зависимости от принадлежности к ряду (ациклические - циклические) и наличия кратных связей углеводороды классифицируют по группам. Наиболее важные группы перечислены в табл. 2.1. [c.133]

    Старое разделение адсорбентов и молекул па неполярные и полярные не отражает различий в локальном распределении заряда на периферии. Неполярные молекулы с л-связями адсорбируются специфически качественно так же, как и полярные со свободными электронными парами. Характер и расположение полярных функциональных групп, положительных и отрицательных ионов на поверхности полярных адсорбентов по-разному влияет на молекулярную адсорбцию специфические адсорбенты второго типа сильно и специфически адсорбируют (кроме полярных молекул групп В ж D) неполярные молекулы непредельных и ар< матиче-ских углеводородов, а специфические адсорбенты третьего типа специфически не адсорбируют ароматические углеводороды, но сильно и специфически адсорбируют молекулы групп D (см. стр. 463). Для систематизации этих фактов полезна предложенная мною классификация. Она успешно используется в работах Баррера, Эверетта, Беленького (см. ссылкп [6—8] в нашей статье на стр. 148), в докладе И. Е. Неймарка (стр. 151) и др. [c.205]

    Классификация содержит следующие группы соединений 1(в порядке убывания степени токсичности) мышьяк и его соединения ртуть и ее соединения кадмий и его соединения таллий и его соединения свинец и его соединения сурьма и ее соединения соединения фенола цианистые соединения изоцианаты галогенорганические соединения, за исключением полимерных материалов и некоторых других веществ, отмеченных в этом списке или охваченных другими перечнями токсичных или опасных отходов хлорированные растворители органические растворители биоциды и фитофармацевтические соединения смоляные остатки нефтеперегонки и дистилляции фармацевтические соединения пероксиды, хлораты и азиды эфиры неидентифицированные отходы химических лабораторий с неизвестным эффектом воздействия на окружающую среду асбест селен и его соединения теллур и его соединения полициклические ароматические углеводороды (канцерогенные) карбонилы металлов растворимые соединения меди кислоты или основания, используемые при обработке поверхности металлов. [c.13]

    Основная область научных исследований — химия белка. Разработал (1920—1930) методы получения пептидов, в частности ами-нолизом азлактонов аминокислотами или их эфирами (реакция Бергманна). Открыл (1926) реакцию циклизации К-галогенацил-аминокислот с одновременным де-галогенированием при нагревании с уксусным ангидридом в пиридине с образованием азлакюнов (реакция Бергманна). Установил (1928) способность натрия и лития присоединяться к многоядерным ароматическим углеводородам. Совместно с Л. Зервасом предложил (1932—1936) способы получения исходных производных аминокислот, в частности способ создания К-карбоксипроизводных. Провел цикл исследований, посвященных протеолитическим ферментам и положенных в основу современной классификации последних. Открыл (1934) реакцию определения С-концевой аминокислоты в пептидах через соответствующие альдегиды, полученные превращением пептида в азид, затем в карбобенз-оксипроизводное с последующими гидрированием и гидролизом (карбобензокси-метод, или реакция Бергманна). Издал труды Э. Г. Фи- [c.50]

    В 1952 г. в Сахалинском комплексном научно-исследовательском институте Сибирского отделения АН СССР (СахКНИИ) было начато систематическое изучение свойств и состава нефтей сахалинского нефтеносного района. В период 1952—1955 гг. проводилось общее физико-химическое исследование нефтей ранее и вновь открытых месторождений и изучение группового химического состава с целью разработки химической и технологической классификации этих нефтей [10]. Было найдено, что нефти сахалинских месторождений чрезвычайно разноо бразны по своим свойствам и составу. Здесь наряду с тяжелыми, малопарафини-стыми, смолистыми нефтями, практически не содержащими легких фракций, имеются легкие нефти с ничтожным содержанием смол и серы, высокопарафиновые — с необычно большим содержанием легких ароматических углеводородов. Анализ накопленного фактического материала с геохимических позиций позволил предположительно выделить по крайней мере три генетических типа среди нефтей Сахалина и отметить значительную роль фактора миграции в их формировании [11, 12]. [c.5]

    В соответствии с химической классификацией гиляко-абунан-ские нефти по групповому составу фракции от начала кипения до 300° С относятся к нафтеновому типу. С повышением температур кипения фракций в них резко нарастает содержание ароматических углеводородов. Поэтому, определяя тип нефти по групповому составу фракций от начала кипения до 550° С, их следует уже отнести к нафтено-ароматяческому типу. [c.27]

    По другой классификации (А. Э. Конторович и др., 1967) в названии нефти не упоминается класс углеводородов, если он присутствует в дистилляте в количестве 25% и менее. Классы углеводородов, присутствующие в дистилляте в количествах более 25 7о каждый, упоминаются в названии, причем первым ставится название класса с меньшим содержанием. Нанример, нефти, содержащие 50% метановых, 30% нафтеновых и 20% ароматических углеводородов на дистиллят, называют нафтено-метановыми. Нефть может быть нафтено-метано-ароматической, метано-ароматическо-нафте-новой и др. Если углеводороды какого-либо класса присутствуют в дистилляте нефти в количестве, превышающем 75%, то к названию этого класса углеводородов прибавляется слово существенно . Например, нефть, содержащая 80% метановых, 15% нафтеновых и 5% ароматических углеводородов, называется существенно метановой. Таким путем выделяют 18 классов нефтей существенно метановая, существенно ароматическая, существенно нафтеновая, метановая, нафтеновая, ароматическая, нафтсно мстако-кафтеновая и т. д. В этой классификации не учитывается наличие гетероатомных соединений. [c.8]

    Принятые методы определения химического группового состава топлив (бензин, лигроин, керосин) не могут быть применены к таким смесям высокомолекулярных углеводородов, какими являются смазочные масла, так как структура углеводородов, входящих в эти смеси, часто настолько сложна, что их нельзя уже рассматривать как представителей той или иной химической группы (парафиновых, нафтеновых или ароматических углеводородов). Например, углеводород эгилтетрагидронафталин состоит из ароматического кольца ( бН4), нафтенового кольца (С4Н,) и парафиновой цепи (С2Н5) следовательно, отнесение его, по принятой классификации, к ароматической группе явилось бы совершенно условным и не могло бы его достаточно охарактеризовать. [c.37]

    Применяемые системы обозначения электронных полос спектров поглощения в ароматическом ряду весьма удобны для интерпретации электронных спектров соответствующих гетероароматических молекул. Согласно классификации Клара [34], ароматические углеводороды дают три главных типа полос поглощения, обозначаемых как а-, р- и р-полосы. Интенсивность а-полос невелика (емакс 10 ) и сравнима с интенсивностью — -я полос азинов, но, в отличие от последних, на а-полосах почти не сказывается влияние растворителя. р-Полосы обладают средней интенсивностью (Емако 10 ). Они сильно смещзются в длинноволновую область с линейным аннелированием и образованием полиаценов, в то время как ангулярное аннелирование вызывает лишь слабое смещение. р-Полосы обладают высокой интенсивностью (вмакс 10 ) и, подобно а-полосам, они умеренно смещаются в сторону больших длин волн как при линейном, так и при ангулярном анне-лировании. Обычный порядок длин волн а>р>Р, но в полиаценах а-полоса маскируется р-полосой и обнаруживается между р- и р-полосами. В спектрах многоядерных углеводородов имеется вторая область интенсивного поглощения (Р ), расположенная в коротковолновой части системы а-р-р-полос, а в длинноволновой части этой системы в спектрах большого числа ароматических [c.350]

    В табл. 1 перечислены свойства трех нафт, служащих сырьем риформинга. Состав сырья оказывает решающее влияние на температуру реактора, необходимую для достижения желаемого выхода продукта и его октанового числа. Чем больше содержание парафинов в сырье, тем труднее оно поддается риформингу. Нафты с высоким содержанием парафинов, например легкая арабская нафта, требуют более высоких температур риформинга, дают меньше риформата и заставляют работать при меньшей длительности цикла, чем другие нафты, описанные в табл. 1. Существуют различные способы классификации нафт по их риформируемоста. Согласно одному из способов, мерой риформируемости служит число Н-Ь2А — сумма содержания нафтенов (Н) и удвоенного содержания ароматических углеводородов (2А). Как видно из табл. 1, число Н+2А, равное 60—65, характерно для полученных из мидкоитинентиого [c.139]

    В свое время Бутлеров совершенно обоснованно предполагал, что синтез терпенов можно осуществить путем уплотнения простейших непредельных соединений. Еще в 1873 г, в работе с Горяйновым [2] Бутлеров говорил Словом, механизм уплотнения углеводородов С,,Н I С,,Н., по современной классификации) остается еще довольно темным. Между тем, эти углеводороды представляют особый интерес они, как кажется, примыкают до некоторой степени к терпенам и быть может также к продуктам гидрогенизации ароматических углеводородов . [c.126]

    Наиболее обширной группой РРП в пределах классификации по назначению являются целенаправленные РРП, служащие для проведения реакций. Они используются для получения эфиров этерификацией спиртов кислотами [2] и переэтерификацией сложных эфиров спиртами [3], для получения спиртов гидролизом эфиров [4], для гидролиза уксусного ангидрида [5], для получения олефинов дегидратацией спиртов [6], для изомеризации [7], для получения триоксана [8] и диметилформамида [9], для алкилирования ароматических углеводородов олефинами [10], для получения органоалкоксисиланов [И], этиленгликоля [12] и ряда других продуктов. [c.116]


Смотреть страницы где упоминается термин Классификация ароматических углеводородов: [c.47]    [c.294]    [c.11]    [c.24]    [c.195]    [c.428]   
Смотреть главы в:

Производство и использование ароматических углеводородов -> Классификация ароматических углеводородов




ПОИСК







© 2025 chem21.info Реклама на сайте