Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сульфиды как катализаторы при дегидрогенизации

    При исследовании сульфидов рения в качестве катализаторов дегидрогенизации метилового, этилового, изопропилового, изоамилового и некоторых ароматических спиртов авторами было доказано, что сульфиды рения являются прекрасными дегидрирующими катализаторами для получения формальдегида, уксусного альдегида и ацетона из соответствующих спиртов [35—37]. [c.26]


    Определенная степень изомеризации наблюдалась в присутствии окислов или сульфидов некоторых металлов, например молибдена или вольфрама. Вообще же зти вещества не являются специальными катализаторами изомеризации. Высокие температуры, требуемые для осуществления процесса в присутствии этих катализаторов, не способствуют пи увеличению разветвленности парафинов, ни расширению пятичленного кольца в шестичленное при изомеризации циклопарафинов, так как при исследовании равновесия установлено, что эти реакции лучше идут при низких температурах. Кроме того, расход исходного вещества на такие реакции, как дегидрогенизация, термическое разложение и гидрокрекинг, увеличивается при более высоких температурах. [c.15]

    При нагревании С. достаточно активно вступает в реакции со многими элементами. Селеноводород НгЗе — бесцветный токсичный газ с неприятным запахом. Водный раствор его является слабой кислотой. Соли селеноводородной кислоты — селениды — аналогичны сульфидам. С. используется для изготовления выпрямителей и фотоэлементов, которые нашли широкое применение в электро-и радиотехнике, а также для синтеза различных селенидов, обладающих полупроводниковыми свойствами и применяющихся в термоэлементах, фотосопротивлениях и в качестве люминофоров. Кроме того, С. применяется в производств стекла как краситель для вулканизации каучука, как добавка к сталям, как катализатор в реакциях гидрогенизации-дегидрогенизации. [c.222]

    ДЕГИДРИРОВАНИЕ (дегидрогенизация), отщепление водорода от молекулы орг соединения Осуществляется в присут катализаторов или под действием акцепторов водорода Каталитич Д и обратная р-ция - гидрирование - связаны подвижным термодинамич равновесием Протеканию Д способствует повышение т-ры и понижение давления Осуществляют Д обычно при т-ре > 300 °С и давлении 0,1-5 МПа при необходимости применение более высоких давлений сочетают с соответствующим повышением т-ры Катализаторы Д -обычно многокомпонентные системы, содержащие переходные металлы, их оксиды или сульфиды При Д молекула реагирующего соед образует комплекс с катализатором, распадающийся затем на Н, и продукт Д, десорбируемые с поверхности катализатора [c.10]

    Важнейшие области применения. Наиболее современная область применения рения — изготовление катализаторов. Использование рениевых катализаторов при получении бензина позволяет увеличить производительность установок без их реконструкции и повысить октановое число бензина. Рениевые катализаторы могут использоваться в процессах алкилирования и деалкилирования, гидрогенизации и дегидрогенизации, дегидрохлорирования, изомеризации, окисления и т. п. [71]. В качестве катализаторов применяют металлический рений, его окислы, сульфиды, селениды и т. п. Наибольший эффект дает использование рения в качестве промотора уже известных промышленных катализаторов — платиновых, никелевых, палладиевых и т. д. [72]. [c.292]


    Второй важный фактор в гидрогенизации — применение катализатора. Наиболее активными катализаторами, как и при дегидрогенизации, являются платина, палладий и никель однако они очень чувствительны к сернистым соединениям. Сероустойчивыми катализаторами гидрогенизации являются окислы и сульфиды молибдена, хрома, вольфрама и некоторых других металлов. [c.86]

    Каталитическая дегидрогенизация органических соединений представляет систему реакций, обратных по направлению реакциям гидрогенизации. Катализаторами реакций дегидрогенизации являются поэтому в основном те же металлы УТП группы периодической системы и медь, а также окислы и сульфиды металлов, которые катализируют реакции гидрогенизации. Ввиду того что дегидрогенизация происходит при более высоких температурах, чем гидрирование, катализаторы для нее приготовляются так, чтобы они были активными при температурах до 400— 500° С. Смещение обратимого процесса в сторону дегидрогенизации осуществляется изменением условий, влияющих на динамическое равновесие  [c.224]

    Окислы, сульфиды и гидриды металлов образуют переходную форму между кислотно-основными катализаторами и металлами так, например, они являются катализаторами реакций гидрогенизации-дегидрогенизации, так же, как и многих реакций (крекинг, изомеризация и т. д.), для которых катализаторами служат кислоты. Химическая активность окислов связана с наличием двух валентных состояний, что делает возможным попеременное высвобождение и обратное присоединение кислорода. Ввиду большого разнообразия реакций, катализируемых этой группой, достигнут лишь небольшой прогресс в классификации или установлении механизма каталитических процессов. [c.298]

    Для удаления соединений кислорода и азота такие средние масла следует подвергнуть предварительному парофазному гидрированию (насыщение или форгидрирование). Удовлетворительного удаления соединений азота и кислорода можно достигнуть при применении в качестве катализатора форгидрирования сульфида вольфрама однако при этом образуется также некоторое количество бензина с сравнительно низким октановом числом. Было найдено, что расщепляющую активность сульфида вольфрама можно практически подавить добавлением 15% сульфида никеля. Этот катализатор нашел промышленное применение особенно в процессе гидрирования диизобутена в изооктан. Катализатор с большим содержанием сульфида никеля применялся для реакций дегидрогенизации. Катализатор с аналогичными свойствами и той же активностью, но более дешевый, был получен при применении в качестве носителя активированной окиси алюминия. Этот катализатор содержит 70% окиси алюминия, 27% сульфида вольфрама и 3% сульфида никеля он нашел промышленное применение в качестве катализатора форгидрирования. [c.261]

    Окислы, сульфиды и гидриды металлов образуют переходную форму между кислотно-основными катализаторами и металлами так например, они являются катализаторами реакций гидрогенизации-дегидрогенизации, так же, как и многих реакций (крекинг, изомеризация и т. д.), для которых катализаторами служат кислоты. Химическая активность окислов связана с наличием двух [c.312]

    Высокая чувствительность к отравлению особенно свойственна металлическим катализаторам—железу при синтезе аммиака, серебру и меди при получении формальдегида из метилового спирта и т. д. Сульфиды металлов, в отличие от металлов, нечувствительны к отравлению сернистыми соединениями при реакциях гидрогенизации и дегидрогенизации. [c.76]

    Равновесие между гидроароматичеокими и ароматическими углеводородами таково, что для получения значительной степени превращения необходимы температуры порядка 350—400°. При этих температурах металлы имеют тенденцию действовать как катализаторы крекинга. N 382 действует как катализатор дегидрогенизации гидроароматических соединений, но более удобными оказываются его смеси с сульфидами молибдена, хрома, вана- [c.313]

    Реакции разложения на элементы мог)гг быть практически возможны или при очень высоких температурах (выше 700° С), или в присутствии определенных металлических катализаторов при более умеренных температурных условиях. Никель является одним из наиболее энергичных катализаторов, ускоряющих разложение парафинов, как и других углеводородов, на элементы или метан и элементы. Сабатье и Сандерен [111] описали частичное разложение метана на углерод и водород при 390° С и этана при 325° С в присутствии никеля. Фрей и Смит [39] и Херд [56] наблюдали очень быстрое разложение пропана и бутана на углерод и газы при 350—400° С и 500° С в присутствии того же катализатора. Катализаторами подобного типа являются медь, железо, монель- леталл, многие другие тяжелые металлы и некоторые неметаллы, например селен. Особенно активны порошкообразные металлы. С Другой стороны, тот факт, что железные трубы не активируют разложение нефти на элементы в обычных условиях крекинга, должен указывать или на неактивность железа в виде сплошной массы или на деактивацию металлической поверхности вследствие отложения углерода. Однако каталитическое действие металлической поверхности труб может быть заметно при повышенных температурах, применяемых при крекинге в паровой фазе или в таких процессах, как дегидрогенизация. Предварительная обработка труб при высоких температурах паром или сероводородом может деактивировать металлическую поверхность. Небольшие количества пара или сероводорода (или других соединений серы), добавленные к сырью для крекинга, могут вызвать тот же эффект. В результате такой обработки активная металлическая поверхность покрывается неактивными окислами или сульфидами. Полученный эффект может быть приписан также отравлению активной поверхности образовавшимися окислами или сульфидами. [c.11]


    Джулиард [136] объясняет промотирующее действие окисей при дегидрогенизации циклогексана никелевым катализатором, исходя из предположения, что в процессе приготовления катализатора происходит адсорбция мицеллами гидро окиси или карбоната металлического никеля и что металл действует как промотор одновременно происходит активация частиц никеля окисью, так же как активация частиц окиси никелем. На основании этого предположения выведено уравнение для каталитической активности бинарной смеси. Тяжелые металлы должны рассматриваться вместе с гидрогенизационными катализаторами. Легкие металлы самостоятельно мало применяются, но они имеют значение как 1) промоторы смешанных катализаторов, состоящих из двух веществ, и 2) как вещества, применяемые для повышения действительной поверхности контактирования, с которой они могут быть удалены растворителем. Катализаторы, состоящие из окисей и сульфидов, термически более устойчивы и более устойчивы в отношении отравления, чем металлы [301]. [c.369]

    Уже давно было известно, что при пиролизе каменного угля и нефтяных масел образуется стир10л. Оказалось, что как сам стирол, так и его гомологи являются весьма подходящим материалом для получения других веществ, особенно смол, в которые стирол и его гомологи превращаются в результате полимеризации. Исходным сырьем для получения стиролов посредством пиролиза обыкновенно является этилбензол и его гомологи. Так например в способе, который описали Mark и Wulff гомологи бензола, содержащие хотя бы один этильный радикал, претерпевают каталитическую дегидрогенизацию в паровой фазе при температуре от 500 до 800° в присутствии такого инертного разбавителя, как например во дяной пар, азот или углекислый газ. Катализаторами этой реакции являются соединения таких металлов (особенно их окислы и сульфиды), которые не восстанавливаются или восстанавливаются толькО частично в условиях пиролиза. Сюда относятся окислы кальция, лития, стронция, магния, бериллия, циркония, вольфрама, молибдена или урана, фосфат хрома, алюминат кальция, хромат магния и фосфат кальция, антрацит, активированный уголь, силикагель и глина, а также смеси этих веществ друг с другом. Прибавление 1—3% легко восстанавливаемых соединений металлов, например окислов меди или железа, часто способствует увеличению каталитической активности. Указывается также, что на повышение продолжительности работы катализатора и на увеличение его активности благоприятно влияет предварительная обработка катализато ра при 300—600° газами, не содержащими углерода, как-то водородом, водяным паром, азотом или аммиаком. При таком способе работы из этилбензола образуется стирол, а из этилтолуола — метилстирол. [c.165]

    Регенерация адсорбированных углеводородов производилась при температуре 350 С и остаточном давлении 2 мм р1.С1. Выход нормальных углеводородов составил 22 и 25%, смеси изопарафинов и нафтенов — 72 и 68% от парафиновонафтеновой части сульфидов первой и второй ступеней экстракции соответственно. Нафтеновые углеводороды после адсорбции на цеолите СаА подвергались каталитической дегидрогенизации [201]. Каталитическое дегидрирование проводилось на катализаторе след>ющего состава платина 19,6%, железо 2%, активированный уголь 78,4%. Активность катализатора проверялась перед каждым опытом по циклогексану. Каталитическая установка из трубки длиной 340 мм и диаметром 18 мм с краном для термопары, электропечи, автоматической бюретки, приемника и змеевиковой ловушки. Приемник охлаждался жидким азотом до —70° С. Температура печи автоматически регулировалась на участке длиной 80 мм, записывалась с помощью потенциометра ЭПП-09 и поддерживалась на уровне 300 2°С. Реакцию проводили в токе водорода. Водород подавался в реактор из баллона после трех поглотительных склянок (с 10%-ным щелочным раствором пирогаллола, ангидрона и аскарита) со скоростью 1 л/ч, остатки продукта с катализатора вытеснялись водородом в течение двух часов. Суммарный выход продукта составлял 90%. Продукты разрушения сульфидов анализировались с помощью газожидкостной хроматографии и масс-спектрометрии. [c.66]

    В опубликованной литературе- совершенно отсутствуют сведения о каталитических превращениях циклических сульфидов над алюмссиликат-ньши катализаторами. Из термодинамических данных, опубликованных в литературе для тиофана [9] и для тиациклогексана [10], нами были вычислены изменения свободных энергий, логарифмы констант равновесий и глубины равновесных превращений для реакций, наиболее вероятных при каталитических превращениях этих соединений на алюмосиликатных катализаторах (табл. 1). Из данных табл. 1 следует, что для циклических сульфидов термодинамически возможны реакции, идущие с выделением сероводорода, реакции дегидрогенизации и реакции деструктивной гидрогенизации. Проведенные нами опыты по каталитическому превращению цис- [c.200]

    Дегидрогенизация этилбензола с образованием стирола легко идет при температурах порядка 550—670°, особенно в присутствии катализаторов, в качестве каковых рекомендованы трудно восстанавливаемые окислы и сульфиды Са, Sr, Mg, Mo, V, а также фосфаты хрома, хромат магния и другие рекомендовано также прибавление к этим катализаторам небольших количеств окислов железа или меди (1—3%). При сиижеппом парциальном давлении паров этилбензола, например, путем введения в зону реакции паров воды или азота, выходы стирола при 650° могут достигать 82,7% на затраченный этилбензол. [c.552]

    Сульфиды никеля являются важными промышленными катализаторами гидрогенизации и дегидрогенизации. В качестве стабильных фаз в каталитических системах идентифицированы сульфиды NiS и NigSj. [c.190]

    Очень часто в соответствии с полярным механизмом присоединяются по месту двойной связи сероводород, меркаптаны и другие соединения серы подобного тина, особенно в условиях, которые облегчают их неполярное разложение. В этом отношении благоприятно влияют перекиси, кислород, ультрафиолетовые лучи или высокая температура. В пользу радикального механизма говорит и то обстоятельство, что среди продуктов реакции имеются соединения, образовавшиеся за счет присоедипепия не по правилу Марковпикова. Так, если пропускать смесь паров стирола с сероводородом нри температуре 600 над соответствующим катализатором (например, сульфид железа на активированной окиси алюминия), то происходит радикальное присоединение сероводорода с образованием меркаптана, который в большей своей части циклизуется с одновременной дегидрогенизацией, причем получается беизотнофен [584]. [c.126]


Смотреть страницы где упоминается термин Сульфиды как катализаторы при дегидрогенизации: [c.649]    [c.440]    [c.174]    [c.24]    [c.25]    [c.467]    [c.52]    [c.18]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.440 ]




ПОИСК





Смотрите так же термины и статьи:

Дегидрогенизация



© 2025 chem21.info Реклама на сайте