Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозия в водяном паре при высокой температуре

    При сгорании дизельного топлива сернистые соединения любого строения образуют оксиды серы 802 и 80з, которые могут вызывать коррозию металлов при низкой и высокой температурах. Низкотемпературная коррозия связана с конденсацией из продуктов сгорания водяных паров на металлических поверхностях и растворением в конденсате оксидов серы с образованием сернистой и серной кислот. Высокотемпературная коррозия (600-900 °С) обусловлена газовой коррозией за счет непосредственного соединения металлов с серой. [c.104]


    Кроме того, известно, что теплопередачу приходится осуществлять при помощи различных газообразных, жидких и твердых теплоносителей, которые обладают различными физическими свойствами. Для успешного решения указанных задач необходимо располагать основными зависимостями по теплопередаче наиболее важных технических материалов воздуха, воды и водяного пара, а также и других материалов, которые применяются в химической промышленности. Теплопередача в промышленности осуществляется в различных условиях. Так, в некоторых случаях она протекает при очень большом давлении и при высокой температуре, в других— при очень низкой температуре или низком давлении. Интенсивность теплообмена в значительной степени зависит от того, в каком состоянии находится соответствующий материал, или от способа, каким осуществляется теплопередача. В частности, интенсивность теплообмена различна для нагревания или охлаждения, испарения или конденсации. Значительную роль играют в данном случае условия производства, чистота поверхностей, коррозия и другие факторы, от которых зависит выбор материалов и наивысших допускаемых температур с учетом качества продукта или перерабатываемого сырья. [c.7]

    Водород, образующийся при коррозии или растворении в неокисляющих кислотах , при коррозии в сероводороде и воде или водяном паре высокой температуры, так же как и водород, образующийся при гальваническом осаждении металла или при катодной поляризации, может диффундировать в железо в атомарном состоянии. При этом материал охрупчивается прочность при растяжении и изгибе и предел усталости понижаются, а твердость увеличивается. [c.33]

    Коррозия особенно интенсивно развивается при взаимодействии металла с водяным паром высокой температуры. Пар высокой температуры, соприкасаясь с нагретым металлом, разлагается на кислород и водород. Кислород, соединяясь с металлом, образует на поверхности металла окислы, а водород поглощается металлом, в результате чего возникают так называемые флокены, представляющие собой волосяные трещины, которые способствуют межкристаллитному разрушению металла. [c.51]

    Аналогично сконструирован газогенератор Лурги, предназначенный для газификации кускового топлива под давлением 1,5— 3 МПа. Корпус аппарата имеет двойные стенки, образующие водяную рубашку, и рассчитан на соответствующее давление. Давление воды в рубашке несколько больше, чем внутри газогенератора. Для защиты стенки от коррозии и воздействия высокой температуры шахта газогенератора выложена изнутри огнеупорным кирпичом. Топливо подается сверху через шлюзовое устройство в загрузочную воронку, где подогревается пароводяной рубашкой. Парокислородная смесь подается снизу, причем часть пара поступает из рубашки. Для удаления золы предназначена вращающаяся колосниковая решетка, из-под которой зола периодически выбрасывается через специальный штуцер и шлюз. Газ отводится из верхней части газогенератора. Производительность аппарата при Давлении 2 МПа около 0,9 т/(м -ч). [c.278]


    До сих пор рассматривалось образование, устойчивость и разрушение защитных оксидных пленок, возникающих на металле при химическом взаимодействии его с кислородом. Но помимо кислорода ряд других газов может обладать сильными агрессивными свойствами по отношению к металлам при повышенных температурах. Наиболее активными газами являются фтор, диоксид серы, хлор, сероводород. Их агрессивность по отношению к различным металлам, а следовательно, и скорость коррозий последних не одинакова. Так, например, алюминий и его сплавы, хром и стали с высоким содержанием хрома устойчивы в атмосфере, содержащей в качестве основного агрессивного агента кислород, но становятся совершенно неустойчивыми, если в атмосфере присутствует хлор. Никель неустойчив в атмосфере диоксида серы, а медь вполне устойчива. Коррозия низколегированных и углеродистых сталей в выхлопных газах двигателей внутреннего сгорания, в топочных и печных газах сильно зависит от соотношения СО и Ог. Повышение содержания Ог увеличивает скорость газовой коррозии и, наоборот, повышение содержания СО ослабляет коррозию. Ряд металлов (Со, N1, Си, РЬ, С(1, Т1) устойчив в атмосфере чистого водяного пара при температуре выше температуры кипения воды. [c.211]

    Железо, высокоуглеродистые и низколегированные стали устойчивы в разбавленных растворах щелочей. Аэрация, повышенная температура, высокие концентрации и присутствие хлоридов способствуют увеличению скорости коррозии. Значительно разъедают сталь кипящие растворы гидроокиси натрия при концентрации выше 10%. В 30%-ном растворе гидроокиси натрия процесс замедляется (20 г/м2-24 ч) вследствие образования защитной пленки. Скорость коррозии можно "уменьшить путем предварительной окислительной обработки водяным паром при температуре 550°С. В расплавленной гидроокиси натрия коррозия железа идет с высокой скоростью, равномерно возрастающей с повышением температуры от 350 до 600°С. Выше этой температуры наблюдается интенсивное растворение. [c.78]

    Исследование растворимости в водяном паре высокого давления соединений, собственное давление насыщенного пара которых при температуре опыта незначительно, представляет большой интерес как с практической, так и с научной точки зрения. Растворимость ряда соединений (кремнекисл оты, солей натрия, кальция и магния) имеет важное значение для паротурбинных электростанций, так как для нормальной работы турбин требуется пар высокой чистоты (сумма примесей не более 0,05—0,2 мг/кг). Еще большую роль играет чистота пара для атомных электростанций с кипящими реакторами и поступлением пара непосредственно в турбину, поскольку отложения в последней могут содержать долгоживущие радиоактивные изотопы. Для атомных электростанций имеет значение растворимость в паре очень большого числа разнообразных соединений, попадающих в котловую воду не только вследствие присосов воды, охлаждающей конденсатор турбины, но и за счет коррозии элементов оборудования, а в ряде случаев— попадания в воду продуктов деления. Существенную роль играет растворимость в паре некоторых соединений, особенно кремнекислоты, и в геологии (вопросы генезиса горных пород). [c.158]

    Высоконагретый водяной пар обладает способностью в значительной степени растворять многие вещества, в том числе и практически нерастворимый в обычной воде оксид алюминия. Способность пара к поглощению солей обычно растет с увеличением температуры и давления. Особенно активен водяной пар, имеющий температуру выше критической точки, то есть 370 °С. Хотя его плотность может превосходить плотность воды, он из-за высокого давления не переходит более в жидкую фазу. Растворы веществ в сверхкритическом паре называют гидротермальными растворами. Они образуются при вулканических процессах, и в течение миллионов лет при осаждении из паров возникают природные кристаллы кварца, слюды и других минералов. В электромашиностроении такая растворяющая способность сверхкритического водяного пара порождает множество трудностей, связанных с растворением в паровой фазе различных продуктов коррозии, которые при осаждении пара после парогенератора частично выделяются на [c.72]

    Для защиты оборудования от коррозии водяным паром при 140° применяют покрытие алюминием толщиной 0,3 мм. Алюминиевые покрытия, так же как и алюминий, обладают высокой коррозионной стойкостью при действии сернистых соединений при высоких температурах. Этим объясняется широкое применение алюминиевых покрытий методом напыления (гальванические алюминиевые покрытия не нашли распространения) для защиты от коррозии оборудования заводов, перерабатывающих сернистые нефти, для защиты вулканизационных котлов и т. п. аппаратов. [c.280]


    Причиной разрушения теплообменных аппаратов, обогреваемых горячей водой, водяным паром и другими теплоносителями, может быть также электрохимическая коррозия, возникающая при воздействии содержащихся в воде кислорода и двуокиси углерода. Электрохимическая коррозия приводит к образованию на поверхности металла окислов железа. Скорость ее протекания возрастает при высоких температурах и давлениях. [c.145]

    Биологическая коррозия пластифицированных полимеров вызывается микроорганизмами, главным образом плесенью. Плесень способствует конденсации водяных паров, ухудшению механических и электрических свойств пластифицированного материала. В ряде случаев проблема стойкости пластифицированных полимеров к действию плесени рассматривается вообще как проблема стойкости пластификаторов, поскольку некоторые виды плесени используют в качестве источника питания пластификаторы, входящие в состав композиций. При воздействии плесневых грибов на пластифицированный ПВХ разрушающее напряжение при растяжении и напряжение при двойном удлинении увеличивается, а относительное удлинение при разрыве уменьшается (рис. 4.15, а). Морозостойкость по Клашу — Бергу сдвигается в область высоких температур. По мнению авторов [381], эти данные свидетельствуют о том, что эластичность пленок уменьшается в результате разрушения пластификатора плесневыми грибами. В момент воздействия микроорганизмов (их вводили на 15-ые сутки) удельное поверхностное электрическое сопротивление уменьшается, а удельное объемное электрическое сопротивление остается без изменений (рис. 4.15,6). Это свидетельствует о воздействии на материал плесневых грибов с поверхности [381], при этом потеря пластификаторов (ДОС, ДОА) составляет 30 /о, что вызывает значительную усадку пленок, достигающую 15—20% от линейного размера образца. [c.187]

    Важной проблемой обеспечения долговечности эксплуатации котлов-утилизаторов является борьба с сернокислотной коррозией. Исходя из этого, рационально использовать их при более высоких температурах, чем воздухоподогреватели, применение которых ограничено температурой топочных газов 450—500 Х, поскольку, работая в области высоких температур, котлы более надежны в эксплуатации и имеют большой ресурс работоспособности. Получаемый из котлов-утилизаторов водяной пар по параметрам пригоден для применения в технологических схемах установок в качестве греющего агента и для привода паровых турбин турбокомпрессоров. [c.76]

    Продукты сгорания дизельного топлива всегда коррозионно агрессивны. При сгорании сернистых соединений образуются соединения серы ЗО] и 80з, вызывающие в зоне высокой температуры газовую коррозию. Вода, выделяющаяся при горении водорода топлива, и влага, находящаяся в топливовоздушной смеси в виде пара, присутствуют в продуктах сгорания. При охлаждении ниже 100 °С водяной пар конденсируется, растворяет сернистый газ ЗОг и серный ангидрид 50з с образо- [c.16]

    Чтобы обеспечивать требуемую активность дымовых газов и достаточную тягу для их удаления, необходимо температуру дымовой трубы поддерживать на достаточно высоком уровне. Она не должна быть ниже точки росы водяных паров, содержащихся в дымовых газах, так как конденсация воды приводит к коррозии и разрушению кладки. Наконец, если в процессе сжигания осуществляется нагрев материала до определенной температуры, то, как правило, неизбежно удаление дымовых газов при повышенных температурах (тепло может передаваться только от тела с большей к телу с меньшей температурой). В периодическом процессе тепловая нагрузка по ходу процесса, особенно в конце его, снижается, однако тенденция выброса горячих уходящих газов остается. В непрерывных процессах иногда можно охлаждать дымовые газы, направляя их навстречу подаваемому на процесс холодному веществу. Но как бы ни ограничивали в каком-либо процессе температуру уходящих газов, всегда будет существовать минимально необходимый уровень ее, который приходится поддерживать. [c.107]

    Устройства для подготовки топлива предназначены для поддержания постоянства его состава путем усреднения, а также для очистки от загрязнений. Для сжигания топлива предназначены форсунки—для жидкого топлива (мазута, реже соляра и тяжелого газойля) и горелки — для газового топлива (газов нефтепереработки, реже природного газа). В форсунках жидкое топливо распыляется водяным паром, механическим воздействием высокого давления или воздухом, во всех случаях должно быть обеспечено хорошее смешение его с воздухом, что необходимо для 1ЮЛНОГО сгорания топлива, уменьшения коксообразо-вания, перегрева и прогара труб. Распыление паром, который является по существу балластом в процессе горения, снижает температуру факела, усиливает коррозию деталей топки, особенно, если топливо содержит сернистые соединения, дает сильный щум, ухудшающий условия труда персонала. Форсунки механического распыления значительно менее шумны, экономичны, но громоздки, сложны, ненадежны, так как при плохой подготовке топлива быстро засоряются. На нефтеперерабатывающих предприятиях широко применяются разработанные Гипронефтемашем комбинированные форсунки типа ГНФ различных модификаций, в которых жидкое топливо распыляется [c.334]

    Деление сероорганических соединений на активные и неактивные имеет значение только при оценке коррозионной агрессивности топлив при обычных температурах. При сгорании все они образуют окислы серы 802 и 80з, обладающие высокой коррозионной агрессивностью. При высоких температурах окислы серы вызывают сухую газовую химическую коррозию металлов камер сгорания, выпускных клапанов, трубопроводов и т. д. При относительно низкой температуре, когда возможна конденсация водяных паров из продуктов сгорания, окислы серы растворяются в капельках воды с образованием серной и сернистой кислот. В этих условиях протекает электрохимическая коррозия, скорость которой очень высока. [c.20]

    Стойкость сталей, из которых изготовлены печные трубы, к коррозии в газовых средах при высоких температурах зависит от состава и свойств газов, температуры и длительности ее воздействия, скорости нагрева и охлаждения, наличия напряжений. При наличии в газовой среде печей сероводорода, дву- и триокиси серы, водяных паров, аэрозолей и других компонентов, защитные пленки на жаропрочных сталях разрушаются, что понижает их эксплутационную стойкость. [c.186]

    Дихлорэтан при высокой температуре разлагается с образованием (в присутствии водяного пара) соляной кислоты, поэтому во избежание коррозии растворитель отгоняют в специальных кубах только с закрытым паровым нагревом без впуска открытого пара. [c.378]

    Тепло, необходимое для отпаривания, вводят через выносной кипятильник, обогреваемый обычно водяным паром. Важным параметром является температура низа десорбера. Так, для моноэтаноламина рекомендуется температура отпаривания не более 125 °С, поскольку при повышении температуры скорость разложения этого реагента быстро возрастает. Вследствие относительно высокой температуры в низу отпарной колонны и в кипятильнике наблюдается сероводородная коррозия, поэтому трубки кипятильника изготавливают из нержавеющей стали (Ст. 18-8) нижняя часть колонны также имеет соответствующую облицовку. [c.278]

    Хромоникелевые аустенитные стали с 18% Сг и 8 /о N1, со держащие титан или ниобий, не склонны к межкристаллитной коррозии и обладают высокой коррозионной устойчивостью в водяном паре в широком интервале рабочих температур и при высоких давлениях. [c.85]

    Несмотря на ограничения, обусловленные схемой процесса, некоторые меры практически вполне осуществимы 1) поддержание низких скоростей в теплообменниках 2) циркуляция насыщенного раствора по трубам теплообменников, а не в межтрубном пространстве 3) поддержание повышенного давления в теплообменниках для ослабления коррозии кислыми газами, выделяющимися из раствора при падении давления. Применение водяного пара низкого избыточного давления (2,8—5,3 ат) и низких температур в кипятильнике (ниже 115° С для водных аминов и 149° С для гликоль-аминовых растворов) также ослабляет коррозию. Коррозию можно ослабить и изменением конструкции кипятильника. Чтобы поддерживать минимальную температуру водяного пара в течение всего процесса, клапан, регулирующий расход пара, следует устанавливать на паровой линии перед кипятильником, а не на линии конденсата из кипятильника. Вибрацию трубок кипятильника можно уменьшить, располагая трубы в трубной решетке по квадрату это облегчает выход газа и позволяет уменьшить накопление осадка на трубках кипятильника. Наконец, следует поддерживать достаточно высокий уровень раствора в кипятильнике с тем, чтобы все трубы были постоянно закрыты жидкостью. [c.52]

    Особенно сильной коррозии подвержены кипятильник и паропровод кипятильника к отпарной колонне. В трубное пространство поступает теплоноситель (обычно водяной пар) при температуре 170 С и давлении 0.9 МПа, а в межтрубном пространстве находится раствор МЭА, ДЭА, содержащий сероводород, углекислый газ при температуре 130°С п давлении 0,15 МПа. В таких тяжелых условиях пропсходнт интенсцвная коррозия даже нержавеющей стали. Более высокой стойкостью к износу по сравнению с другими сталями обладает нержавеющая сталь Х17Н13МЗТ. Из этой стали, [c.182]

    Корродируют и трубки кипятильников из углеродистой стали в системах очистки водными растворами аминов и гликоль-аминовыми растворами. На установках очистки растворами моноэтаноламина особенно интенсивная коррозия труб кипятильника вызывается работой отпарной колонны при чрезмерно высоком давлении (а следовательно, и очень высокой температуре) или применением водяного пара или другого теплоносителя, имеющего высокую температуру. В системах очистки гликоль-аминовыми растворами снижение интенсивности коррозии вследствие низкои концентрации кислого газа подностьвТ компенсирует усиление коррозии под действием высоких температур в кипятильнике. [c.51]

    Бомба изнутри не была покрыта листовой платиной, в отличие от бомбы Фриделя и Саразена. Баур заметил, что на внутренней поверхности бомбы, при реакции водяного пара высокого давления со сталью, образуется поверхностный слой окислов железа, который и предохраняет металл от дальнейшей коррозии. Эта защита будет недостаточной лишь в том случае, если применить весьма кислые растворы тогда продукты коррозии загрязнят синтетический материал. Чтобы этого избежать, для растворов следует применять платиновый или золотой тигель. Бомба нагревается на слое песка в вертикальной электрической печи сопротивления. Позднее установка Баура была усоверщенствована Ниггли и Шлепфе-ром< они применили серебряный вкладыш в слегка коническом рабочем пространстве бомбы. На верхнем конце этого вкладыща был плоский фланец, диаметр которого равнялся диаметру медной прокладки. При завинчивании обтюратора медная прокладка плотно прижималась к серебряному фланцу и можно было гарантировать превосходную герметичность уплотнения. В подобной конструкции довольно сложно, хотя я очень желательно, непосредственно ввести термопару в бомбу с целью измерения температуры. Приблизительное определение температуры производится при помощи термопары, прижатой к наружной поверхности бомбы. Давление вычисляется с достаточной точностью как функция количества воды и объема бомбы (см. С. I, 40). [c.599]

    Характер воздействия сернистого газа и серного ангидрида зависит от температуры. При низких температурах, когда возмонша конденсация водяных паров, образуются сернистая и серная кислоты, в результате чего возникает кислотная коррозия. При очень высоких температурах ЗОа и ЗОз способны реагировать с металлом в газообразном состоянии, поэтому при этих температурах наблюдается газовая коррозия. При умеренно высоких температурах, когда не происходит ни конденсация водяных [c.106]

    Наиболее опасны водяные пары, хлор и хлористый водород. Интенсивность их действия, как и других газов, зависит от свойств материала и температуры воздействия. Например, необходимо защищать аппаратуру от воздействия паров серы при температуре до 1000° С, йода и йодидов при температуре 600—1100° С, хлора и хлористого водорода при 400—600° С, тетрахлорида титана при 1000—1100° С и т. д. Особенно разрушающе действуют пары пятиокиси ванадия, содержащиеся в продуктах сгорания и переработки нефти ( ванадиевая коррозия ). В крекинг-процессе при переработке продуктов температура паров достигает 500—700° С, а давление 20 атм. В таких условиях развивается интеи-сивная коррозия аппаратуры [13]. Исследование растворимости в водяном паре высокого давленпя керамических материалов и соединений, собственное давление насыщенного пара которых ири температуре опыта не- [c.16]

    Потенциал пробоя нелегированного циркония, выплавленного из циркониевой губки, полученной по методу Кролла, быстро достигается при экспозиции в паре или горячей воде при рабочих температурах реакторов. Еще в ранних исследованиях, проведенных в США, было установлено, что такое поведение объясняется почти неизбежным присутствием в металле азота, вредное воздействие которого можно компенсировать введением добавок олова [71] — так был создан сплав Циркалой 2, содержащий примерно 1,5% Зп, 0,1 % Ре, 0,1% Сг и 0,05% N1, предназначенный для водоохлаждаемых реакторов. Известно, одиако, что даже в случае применения этого сплава на стойкость конструкции оказывают влияние технологические операции обработки материала в ходе его изготовления. По этой причине используется строгая система коррозионных испытаний [72, 73], назначение которой — подтвердить сохранение высокой коррозионной стойкости заготовок и конечной продукции. Испытания включают выдержку тщательно подготовленных образцов в течение 14 сут в автоклаве в атмосфере чистого водяного пара при температуре 400° С и давлении 10 МН/м . Материал удовлетворительного качества после таких испытаний имеет прирост массы 28 10 мг/дм и покрыт глянцевой черной пленкой. Неудовлетворительное качество материала обнаруживает себя высоким значением прироста массы (достигающим 100 мг/дм2), а также внешним видом поверхностной пленки, состоящей из белого продукта коррозии. [c.201]

    Присутствие водяного пара, углекислого газа и других агрессивных газов сильно ускоряет окисление углеродистых сталей. На рнс. 107 показано влияние водяных паров иа коррозию углеродистой стали в воздухе при 800"" С. При высоких температурах, выше 700°С, одновременио с окислением происходит обезуглеро- [c.139]

    БИИМ-1 (ТУ 38.4011004-94) — битумная ингибированная изоляционная мастика, предназначена для защиты от коррозии и механических повреждений трубопроводного транспорта. Мастика имеет широкий температурный диапазон применения — от -20 до +70 °С, абразиво- и влагостойка, обладает высокой защитной эффективностью при воздействии агрессивных сред, электролитов, воды и водяных паров. Расход мастики составляет 1-2 кг/м при толщине защитной изоляционной пленки 0,8—1,5 мм. Мастику БИИМ-1 изготовляют на основе продуктов переработки нефти, маслорастворимых ингибиторов коррозии, кальциевых мыл, эластомеров. Наносят на обрабатываемую поверхность из расплава при температуре 120-150 °С. [c.394]

    Самопроизвольно протеШющий нёобратамъш процесс разрушения металлов, превращения их в химические соединения вследствие химического воздействия внешней среды, сопровождающийся изменением их физикохимических свойств, называется коррозией (лат. orro-sio — разъедание). Скорость коррозии зависит от характера среды. В обычной атмосфере металлы могут разрушаться, взаимодействуя с кислородом, азотом, водяными парами, оксидом углерода (IV), В производственных же условиях металлоизделия могут контактировать с более агрессивными веществами — щелочами, оксидами азота и серы, кислотами и галогенами. Следовательно, с учетом еще высоких температур и давлений, при которых осуществляются производственные процессы, скорость коррозии металлоизделий заметно усиливается. [c.399]

    Сера из скрубберов перетекает в железобетонное хранилище достаточной емкости для обеспечения бесперебойной работы нри затруднениях с ее отгрузкой. Серу часто отправляют расплавленной в специальных цистернах или в твердом впде. В последнем случае ее разливают в большую форму слоев в 5 см после застывания одного слоя заливают второй и так далее на толщину до 3 м. Получающиеся в результате этого плиты раскалывают пневматическими молотками или взрывным способом и погружают в вагоны. Все трубопроводы жидкой серы выполнены из углеродистой стали, имеют паровую рубашку на всем протяжении н проложены с таким уклоном, что при остановке насоса они немедленно самоопорожняются. Отключаются трубопроводы пробковыми кранами с паровым обогревом. Вся аппаратура изготовлена из углеродистой стали, так как опасность коррозии невелика, если температуру поддерживать в определенном интервале, т. е. достаточно высокой, чтобы избежать конденсации водяных паров, и достаточно низкой, чтобы избежать коррозии серой. [c.534]

    Все металлы, особенно железо и сталь, в той или иной стеиеии подвергаются коррозии, главным образом в присутствии кислорода и воды [1]. В решении проблемы защиты металлов от коррозии большая роль отводится органическим покрытиям, в частности на основе фенольных смол. Эти покрытия отличаются высокой адгезией к металлам, низкой скоростью диффузии водяных паров и кислорода, химической инертностью и стойкостью к воздействию температур. Поскольку немодифицироваииые фенольные смолы образуют очень хрупкие [юкрытия, были разработаны пластифицированные смолы, обладающие меньшей хрупкостью. Однако в настоящее время покрытия всегда получают на основе смеси фенольных смол с более пластичными и гидрофобными смолами, например эпоксидными, алкидиыми или природными, а также с ма-леинизированными маслами и поливинилбутиралем. Однако эти вещества способствуют быстрому обесцвечиванию покрытий и поэтому используются главным образом для создания грунтовочного и промежуточного слоев. Прн необходимости для растворения грунтовочных материалов в углеводородах алифатического и ароматического рядов применяют алкилфенолы. Отверждение протекает обычно прп 160—200°С, а сшивание — при комнатной температуре (ири условии добавления кислот или высыхающих масел). [c.198]

    Скорость коррозии железа в воде, не содержащей растворенный кислород, практически ничтожна. При высоких давлениях и температуре железо реагирует с водой и водяными парами, что можно представить уравнением ЗРе + 4Н2О = Рез04 + 4Нз [c.79]

    Одним из главных условий нО р мальной работы тканевых фильтров является поддержание необходимой температуры очищаемых газов на входе в фильтр и внутри-него При температурах более высоких, чем указано в табт 5 13, резко сокращается срок службы тканей, а при температурах ниже точки росы возможна конденсация водяных паров, сопровождаема образованием неудаляемых наростов или почти полной потерей газопроницаемости ткани и усилением коррозии металлических деталей [c.182]

    В сухом состоянии болыпипство растворителей обычно не вызывает интенсивной коррозии, но в результате пропаривания в адсорбционном оборудовании могут возникнуть условия, вызывающие коррозию. Многие растворители гидролизуются в присутствии воды или водяного пара при высоких температурах часто активированный уголь каталитически ускоряет [c.303]


Смотреть страницы где упоминается термин Коррозия в водяном паре при высокой температуре: [c.61]    [c.273]    [c.86]    [c.113]    [c.94]   
Смотреть главы в:

Коррозия металлов Книга 1 -> Коррозия в водяном паре при высокой температуре




ПОИСК





Смотрите так же термины и статьи:

Коррозия при высоких температурах

Температуры высокие



© 2025 chem21.info Реклама на сайте