Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитическая дегидрогенизация органических соединений

    Органические соединения, содержащие азот, в условиях каталитического риформинга подвергаются деструкции, образуя аммиак и углеводороды. В присутствии азотсодержащих соединений снижаются скорости реакций гидрокрекинга, изомеризации, дегидроциклизации и в несколько меньшей степени дегидрогенизации [33]. [c.12]

    В этом. разделе излагаются методы и аппаратура, применяемые для проведения каталитической гидрогенизации, и детально рассматриваются оригинальные работы русских, советских и зарубежных авторов по гидрированию, каталитическому восстановлению и дегидрогенизации различ Ных органических соединений. [c.233]


    Основные научные работы посвящены теории и экспериментальным исследованиям процессов каталитической гидро- и дегидрогенизации органических соединений. Разработал (1950-е) методы точного определения активности катализаторов, величин энергий и характера химической связи молекул реагента с поверхностью катализатора, а также всех изменений поверхности в ходе реакции посредством измерения электрохимических потенциалов работающих катализаторов-электродов. Создал теорию оптимизации катализаторов гидрогенизации. Разработал новые катализаторы гидрогенизации жиров, сахаров, производных ацетилена, нитросоединений, душистых веществ, а также катализаторы дожигания выхлопных газов двигателей внутреннего сгорания и очистки технологических газов. Создал научную школу специалистов в области катализа. [c.471]

    Каталитическая дегидрогенизация органических соединений представляет систему реакций, обратных по направлению реакциям гидрогенизации. Катализаторами реакций дегидрогенизации являются поэтому в основном те же металлы УТП группы периодической системы и медь, а также окислы и сульфиды металлов, которые катализируют реакции гидрогенизации. Ввиду того что дегидрогенизация происходит при более высоких температурах, чем гидрирование, катализаторы для нее приготовляются так, чтобы они были активными при температурах до 400— 500° С. Смещение обратимого процесса в сторону дегидрогенизации осуществляется изменением условий, влияющих на динамическое равновесие  [c.224]

    КАТАЛИТИЧЕСКАЯ ДЕГИДРОГЕНИЗАЦИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ [c.103]

    При описании реакций конденсации (гл. XV) были приведены такие, где образование новой углеродной связи происходит через отщепление водорода. В некоторых случаях водородные атомы могут быть отняты путем действия кислорода или серы на органические соединения и связаны в виде воды, соотв. сероводорода. Имеются однако факты отнятия водорода при образовании новых углеродных связей, где реакция возбуждается каталитическими воздействиями и где водородные атомы связываются лишь в молекулу водорода. Здесь следовательно имеет место тоже дегидрогенизация своеобразного характера, которой должно предшествовать некоторое ослабление, разрыхление связи между водородным атомом и углеводородным остатком, при благоприятных к тому условиях могущее закончиться полным разрывом этой связи с установлением новой углеродной  [c.499]

    Это —немногие примеры, которые позволяют использовать сведения, представленные в таблицах различных каталитических реакций органических и неорганических соединений для анализов и сравнений. Катализаторы можно классифицировать также по присущим им функциям, т. е. как вещества, способствующие ослаблению связей, и как вещества, образующие промежуточные продукты присоединения. Первоначальные изменения, вызываемые хлористым алюминием, например в углеводородах, могут сводиться к активации водородных атомов, ведущей в некоторых случаях к ослаблению связей. Активация водородных связей проявляется при гидрогенизации и дегидрогенизации, а также конденсации в ароматическом ряду и в реакциях крекинга и обмена. Миграция галоидных атомов в углеродных цепях и циклах под влиянием хлористого алюминия наблюдается при реакциях изомеризации. Окись магния и титана, глины и некоторые природные земли способствуют разрыву углерод—углеродной связи. Наиболее типичные катализаторы для реакций галоидирования — это вещества, обычно применяемые в качестве носителей при реакциях в паровой фазе. Некоторые катализаторы способны к образованию двойных солей с реагирующими веществами в этом случае стабильность промежуточных продуктов определяет их каталитическое действие. [c.4]


Таблица 432 Каталитическая дегидрогенизация различных органических соединений Таблица 432 <a href="/info/28979">Каталитическая дегидрогенизация</a> <a href="/info/354439">различных органических</a> соединений
    Дегидрогенизация и гидрогенизация органических соединений при 295- 300° Металлические катализаторы, каталитически осажденный палладий из раствора хлористого палладия на металл в разбавленной серной кислоте препарат нагревают до 300—400° в струе кислорода, после чего температуру понижают до 200—400° рекомендуется применение сетки из палладиевой проволоки, покрываемой палладием описанным выше способом 777 [c.366]

    Предлагаемая вниманию читателей новая книга В. И. Кузнецова содержит подробный историко-критический анализ развития исследований каталитических процессов гидрогенизации, дегидрогенизации, гидратации и дегидратации, окисления, гало-генирования и нитрования органических соединений. Она является своего рода продолжением уже опубликованных работ этого же автора , в которых нашли освещение такие разделы органической химии, как полимеризация, изомеризация и крекинг. [c.3]

    Применение высоких давлений и открытие в этой связи обратимости многих каталитических реакций, происходящих при высокой температуре, привели Ипатьева также к важнейшим практическим выводам в области гидрогенизационно-дегидроге-низационного катализа. Катализаторы дегидрогенизации спиртов, согласно найденным условиям обратимости реакций, должны были и действительно оказались одновременно и катализаторами гидрогенизации. Как и следовало ожидать, процесс гидрогенизации под давлением совершался с большей скоростью и более полно с почти теоретическим выходом продуктов. При этом оказалось возможным гидрировать такие органические соединения, которые при обыкновенном давлении разлагались от действия высокой температуры. Гидрогенизационный катализ органических соединений при обыкновенном давлении, открытый и детально разработанный Сабатье, впоследствии уступил место каталитическому гидрированию по принципу Ипатьева в технике стали применять способы гидрогенизации только под высоким давлением. Оценивая важность введения Ипатьевым высоких давлений в катализ и успехи, достигнутые в связи с этим в химической промышленности, Зелинский и Вильштеттер справедливо ставят, например, заслуги Нернста и Габера в разработке способа синтеза аммиака под высоким давлением в зависимость от первых заслуг Ипатьева в этой области [12, стр. 26, 64, 65]. [c.43]

    Свои последующие работы Платонов с сотрудниками [29—37] вели в двух направлениях 1) применение рения и его соединений в качестве катализаторов при дегидрогенизации спиртов с получением альдегидов и кетонов 2) при каталитическом окислении органических веществ. [c.26]

    Среди различных окислов металлов, применяющихся для полимеризации олефинов, большой практический интерес представляет окись хрома. Окись хрома как катализатор различных органических реакций (ароматизации, дегидрогенизации, изомеризации и др.) известна уже с давних пор и ее каталитические свойства в этих реакциях достаточно хорошо изучены. Каталитическая активность кислородных соединений хрома объясняется легкостью перехода хрома из одного валентного состояния в другое, способностью быть как донором, так и акцептором электронов. Особенно хорошо изучена окись хрома в реакции ароматизации и изомеризации парафинов. [c.24]

    На основании фактического материала, содержащегося в первых трех томах справочника, рассмотрены каталитические процессы изомеризации, процессы с участием молекулярного водорода (o-fi-превращение, Hj—Вг-обмен, гидрирование углеводородов и окиси углерода), дегидрогенизации, окисления органических и неорганических соединений. [c.2]

    Характер взаимодействия в значительной степени зависит от электронной структуры твердого катализатора. Значительной каталитической активностью обладают, например, металлы четвертого, пятого и шестого периодов таблицы Менделеева, имеющие недостроенную -оболочку электронов. Активны также соединения этих металлов. К группе каталитических реакций окислительно-восстановительного типа относятся такие процессы, как окисление 80г в 50з при получении серной кислоты, окисление аммиака до окиси азота в производстве азотной кислоты, очень многие реакции частичного окисления органических веществ, например этилена в окись этилена, гидрогенизация, дегидрогенизация, ароматизация и циклизация углеводородов и многие другие. [c.15]

    Спектральную информацию о структуре угля получают, используя известные корреляционные таблицы и диаграммы. Вначале отнесение полос проводили только на этой основе, но в конце концов для подтверждения интерпретации инфракрасных спектров стали привлекать физикохимические методы и методы органической химии. Наряду с ИК-спектральными исследованиями угля здесь пойдет речь и о других параллельно используемых методах. Это экстракция растворителями, разделение на петрографические типы, пиролиз, вакуумная перегонка, химическое и электролитическое восстановление, каталитическая гидрогенизация и дегидрогенизация, окисление, хлорирование, обугливание модельных соединений, фотолиз, радиоактивное облучение, облучение вспышкой и лазером, исследование в электрическом разряде, образование комплексов с переносом заряда и микробиология. [c.172]


    Трудность разделения гибридных структур высокомолекулярных углеводородов и отсутствие достаточно специфических реакций предельных (парафино-циклопарафиновых) углеводородов гибридного строения являются причиной слабой изученности химической природы этой группы высокомолекулярных углеводородов нефти. До сих пор почти отсутствуют данные о соотношении пента- и гексаметиленовых колец в составе предельной высокомолекулярпой углеводородной части сырых нефтей и нефтепродуктов. В бензино-керосиновых фракциях нефтей для решения этой задачи успешно была использована открытая Зелинским [74] реакция избирательной дегидрогенизации гексаметиленов в присутствии платинового катализатора. За последнее время появились сообщения об использовании этой реакции и при изучении строения таких сложных органических соединений, как политерпены, стерины, желчные кислоты, витамины, гормоны и др. [75]. Однако в литературе не встречалось указаний об использовании метода избирательной каталитической дегидрогенизации нри изучении строения предельных высокомолекулярных углеводородов нефти. Нам представлялась весьма заманчивой и перспективной возможность использования этого метода в комбинации с хроматографией и спектроскопией (инфракрасной и ультрафиолетовой) для более глубокого познания химического строения предельной части высокомолекулярных углеводородов нефти гибридного характера. Но прежде чем воспользоваться этим методом, нада было доказать его применимость для решения указанной выше задачи и проверить экспериментально надежность и воспроизводимость получаемых при этом результатов, показать пределы точности метода. [c.213]

    Влияние азотистых соединений. Органические соединения, содержащие азот, в условиях каталитического риформинга подвергаются деструкции, образуя аммиак и углеводороды. Наличие в ырье азотсодержащих соединений приводит к снижению скоростей реакций гидрокрекинга, изомеризации, дегидроциклизацин и в несколько меньшей степени дегидрогенизации [46]. В промышленной практике азотистые соединения обычно удаляются в процессе гидрогенизационного обессеривания сырья. [c.29]

    При изложении фактического материала этого раздела особое внимание уделяется вопросам влияния строения органического соединения (число, характер и расположение заместителей при непредельной связи), природы и структуры катализатора, характера растворителя и некоторых других физико-химических факторов на скорость и направление каталитического превращения. Рассматривается разработанный на кафедре катализа Казахского государственного университета потенциометрический метод исследования порошкообразных катализаторов, позволяющий судить о концентрации реагирующих компонентов на поверхности катализатора в момент реакции. Механизм процессов каталитической гидрогенизации и дегидрогенизации освещается преимущественно с точки зрения мультиплетной теории А. А. Баландина. [c.233]

    Соответствующее соединение было приготовлено из изофорона. Хлор удаляется водородом, а получающийся продукт присоединения ненасыщенного соединения к палладию легко взаимодействует с водородсм. Многие исследователи предлагали различные виды механизма каталитической гидрогенизации. По мнению Ипатьева, гидрогенизация и дегидрогенизация происходят по одному механизму, по которому металлические катализаторы с помощью воды образуют окиси металлов, причем водород выделяется, а окиси затем окисляют органические соединения, отнимая от них водород  [c.594]

    Г идрогенизация органических соединений например, сырой смеси спиртов, получаемой при каталитической дегидрогенизации спирта под давлением и содержащей бутанол, и такие ненасыщенные соединения, как кротониловый спирт, его сложные эфиры и аналогичные вещества температура 120—170° продолжительность процесса 30 мин. давление 200 ат] йодное число падает со 100 до 3 [c.249]

    Монография, написанная известным советским ученым, академиком А. А. Баландиным, является завершающей частью трехтомного труда по созданной им мультиплетной теории катализа. Часть I выпущена в 1963 г., часть II — в 1964 г. В III части книги с точки зрения мультиплетной теории изложены основы теории гидрогенизации и классификации реакций органического катализа, охватывающей около 2000 типов органических реакций, теория сложных реакций и структурная алгебра в применении к химии. Детально рассмотрены механизм и кинетика каталитической гидрогенизации и родственных реакций обмена с дейтерием, гидрогенолиза и дегидрогенизации. Даны рекомендации для количественной обработки результатов при избирательной гидрогенизации олефиновых и ацетиленовых соединений, проведен критический анализ существующих в настоящее время представлений в области гидрогенизации органических соединений. [c.2]

    Переработка нефти включает следующие основные процессы перегонка нефти термический крекинг каталитический крекинг пиролиз коксование и деструктивная гидрогенизация. Большинство из названных процессов основано на широком применении всевозможных катализаторов. Выдающаяся роль в разработке теории и практики каталитических процессов переработки органических соединений принадлежит выдающимся русским и советским ученым и инженерам. Процессы термического и каталитического крекинга, гидрогенизации и дегидрогенизации, получение синтетического каучука и целого ряда важнейших продуктов разработаны и успешно используются в промышленности благодаря работам Г. Г. Густавсона, Н. Д. Зелинского, С. В. Лебедева, А. Е. Фаворского, Л. Г. Гуревич, Б. А. Казанского, А. Д. Петрова, В. И. Каржева, Е. И. Прокопец, А. Ф. До- [c.188]

    В Институте органической химии АН СССР в лаборатории автора в течепие ряда лет ведутся исследовапяя по каталитической дегидрогени-зацпи. По вопросам переработки нефтяных газов в мономеры для синтеза СК проводились работы по дегидрогенизации бутана в бутилен, бутилена в бутадиен и этилбензола в стирол [1], а также дегидрогенизации других жириоароматических соединений. [c.626]


Смотреть страницы где упоминается термин Каталитическая дегидрогенизация органических соединений: [c.114]    [c.174]    [c.332]    [c.332]    [c.16]    [c.443]   
Смотреть главы в:

Развитие учения о катализе -> Каталитическая дегидрогенизация органических соединений

Развитие учения о катализе -> Каталитическая дегидрогенизация органических соединений




ПОИСК





Смотрите так же термины и статьи:

Дегидрогенизация

Каталитическая дегидрогенизация различных органических соединений (таблица



© 2025 chem21.info Реклама на сайте