Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая стойкость антикоррозионных покрытий

    Сплав олово—никель. Покрытие сплавом олово—никель (35 % N1 и 65 % 8п) отличается высокой антикоррозионной стойкостью и получается блестящим непосредственно из ванны. Хорошая химическая стойкость в растворах многих кислот, по- [c.52]

    Методы получения антикоррозионных покрытий и применяемые материалы. Адгезия А. п. п. на основе реактопластов к защищаемым объектам достаточно велика. Термопласты не обладают адгезией к металлам, поэтому покрытия на их основе обычно наносят на какую-либо промежуточную прослойку из клея илн грунта, к-рые, кроме того, создают дополнительный антикоррозионный барьер, препятствующий проникновению агрессивной среды из набухшего покрытия к металлу. В нек-рых случаях удается получить удовлетворительную адгезию путем химич. или теплового воздействия на полимер, в результате чего в макромолекуле появляются полярные, напр, кислородсодержащие, группы. Вероятно, такие группы возникают при газопламенном напылении термопластов. Часто адгезию повышают, вводя в полимерные составы различные адгезивы при этом, как правило, снижается химическая стойкость и повышается проницаемость покрытия. [c.83]


    Кроме применения сплавов титана для изготовления деталей арматуры в промышленности применяется антикоррозионное покрытие на основе титановых порошков. В этом покрытии титановый порошок, состоящий из кристаллов с сильно развитой поверхностью, которые обладают высокой коррозионной стойкостью, применен как наполнитель, а вяжущее вещество — эпоксидная смола. Новое антикоррозионное покрытие по сравнению с известными имеет следующие преимущества высокую коррозионную стойкость, химическую устойчивость, высокую адгезию к металлу, что обеспечивает отличную сцеп-ляемость с защищаемой поверхностью, механическую прочность, долговечность, определяемую противодействием титанового порошка старению эпоксидной смолы. [c.75]

    Антикоррозионные покрытия. Наибольший технико-экономический эффект полимерные материалы дают при использовании их для защиты изделий от различных видов химической и электрохимической коррозии, в том числе в условиях механического воздействия. Кроме химической стойкости исходного полимерного материала защитные свойства покрытий определяются проницаемостью слоя, его прочностными свойствами, характером адгезионного взаимодействия с материалом основы и другими факторами, зависящими от состава композиционной системы и технологических режимов процесса формирования [1, 10].  [c.283]

    При одностороннем давлении агрессивных грунтовых вод, кроме химической стойкости, антикоррозионные покрытия необходимо подбирать в зависимости от величины гидростатического напора с учетом СН 301—65. [c.186]

Таблица 1. Сравнительная химическая стойкость антикоррозионных покрытий в различных агрессивных средах Св числителе данные для холодных сред, в знаменателе — для горячих) Таблица 1. Сравнительная химическая стойкость антикоррозионных покрытий в <a href="/info/1087667">различных агрессивных средах</a> Св числителе данные для <a href="/info/1434084">холодных сред</a>, в знаменателе — для горячих)
    ПОЛИТЕТРАФТОРЭТИЛЕН м, [—СРз—СР —] . Термостойкий термопласт, обладающий высокой химической стойкостью и антифрикционными свойствами применяется для изготовления подшипников, уплотнителей, поршневых колец, химической аппаратуры, антикоррозионных покрытий, сухих смазок и др. [c.335]


    Перхлорвиниловые материалы применяются для антикоррозионных и химически стойких покрытий. Большим преимуществом перхлорвиниловых эмалей является быстрое высыхание (при температуре 18—20°С они высыхают за 2—3 ч.). Однако для полного отверждения покрытия требуется дополнительная выдержка в течение пяти суток и более. Горячая сушка увеличивает механическую прочность и химическую стойкость перхлорвиниловых покрытий. При этом температура сушки не должна превышать 80—90°С при более высокой температуре покрытие разрушается в результате отщепления хлористого водорода от перхлорвинила. [c.137]

    Плитки прикрепляют к защищаемой поверхности и скрепляют между собой при помощи специальных замазок, химическая стойкость которых определяет антикоррозионные свойства покрытия в целом. Футеруемая поверхность обычно покрывается плитками в два слоя так, чтобы плитки верхнего слоя перекрывали швы между плитками нижнего слоя. [c.94]

    Большинство перфторированных соединений представляют собой инертные жидкости без цвета и запаха, обладающие уникальным комплексом физических и химических свойств высокой термической и химической стойкостью, высокими теплофизическими и диэлектрическими характеристиками, антикоррозионными и уникальными поверхностно-активными свойствами, высокой морозостойкостью [4, 8], пониженной - по сравнению с углеводородами - вязкостью. Некоторые из них способны сорбироваться на твердых поверхностях, образуя тонкопленочные защитные покрытия, повышающие коррозионную устойчивость металлов. Они стали использоваться для защиты металлов и сплавов от атмосферной и солевой коррозии. Жидкие фторуглероды применяются как препараты, придающие различным материалам водо- и маслоотталкивающие свойства, как инертные растворители, смазочные масла, применяемые в агрессивных условиях, гидравлические жидкости, теплоносители, жидкости для вакуумных насосов, работающих в коррозионно-активной среде, паяльные жидкости, а также в качестве присадок к маслам, используемых при повышенных давлениях в компрессорах различного назначения. Нельзя не упомянуть и о применении перфторированных соединений в бытовой холодильной технике, небольших по производительности кондиционерах и тепловых насосах, а также в холодильном оборудовании для торговли и общественного питания. [c.11]

    Эпоксидные смолы отличаются высокой прочностью, термо-и химической стойкостью и обладают отличной адгезией к металлам, стеклу, керамике и другим материалам. Отвержденные смолы нетоксичны. В зависимости от молекулярного веса смолы могут быть жидкими и твердыми и применяться как с наполнителем, так и без него — для изготовления инструментов, штампов, заливочных и. пропиточных компаундов, для деталей и узлов электрических устройств, для производства слоистых материалов, антикоррозионных покрытий, замазок, лаков и пр. Клеи, полученные на основе смол, позволяют склеивать разнообразные детали и в том числе такие тонкие, что их невозможно ни сварить, ни спаять. [c.582]

    Политрифторхлорэтилен, или фторопласт-3, уступает тефлону-4 по химической стойкости и термоустойчивости, но имеет лучшую текучесть при нагревании и, следовательно, лучше перерабатывается. При 250— 270° С полимер переходит в вязко-текучее состояние, и при этой температуре из него изготовляются различные изделия прессованием. Температура разложения фторопласта-3 " 290—310° С. Фторопласт-3 применяется для изготовления плит, шнуров, трубок, пленок, а также для антикоррозионных покрытий. Молекулярный вес этого полимера находится в пределах 20 ООО и 400 ООО. [c.132]

    В этой главе приведены основные требования к конструкции оборудования и сооружений, защищаемых от коррозии, правила подготовки металлических и бетонных поверхностей, основные правила производства работ, краткая характеристика оборудования, механизмов и приспособлений, применяемых при производстве антикоррозионных работ, и некоторые сведения по контролю качества покрытий. Включены сведения о химически стойких материалах и изделиях, имеющих в настоящее время широкое применение при защите оборудования и сооружений от коррозии, а также новых материалах, прошедших опытно-промышленную проверку и перспективных для широкого использования. Подробные данные по химической стойкости материалов и покрытий на нх основе 160 [c.160]

    Свинец обладает высокой химической стойкостью и поэтому, несмотря на все большее распространение антикоррозионных покрытий из других мате риалов, до сих пор применяется в коксохимическом производстве, главным образом в сульфатных отделениях. [c.50]

    Смолы ФАЭД отличаются хорошими диэлектрическими свойствами, лучшими, чем просто эпоксидные смолы, высокой химической стойкостью и адгезией к дереву и металлам. Они могут эксплуатироваться при температурах от 100—120 С до 160—180°С, в зависимости от условий, в качестве антикоррозионных покрытий и электроизоляционных заливочных композиций. [c.188]


    Полимерные материалы на основе хлористого винила, обладающие высокой химической стойкостью, влагостойкостью и эластичностью, применяются в электротехнической промышленности, в радиоэлектронной технике, в производстве химических волокон и искусственной кожи, в производстве коррозионностойких труб, антикоррозионных пленок и покрытий. [c.331]

    Химическая - стойкость — одна из тех характеристик, по которым можно судить о полярности пластмассы. С учетом химической стойкости выбирают технологию поверхностной обработки и материал для изготовления производственного оборудования или защитные антикоррозионные покрытия. Более обстоятельно эти вопросы рассматриваются в работах [3, 4]. В работе [5] приводится сводка данных о стойкости 19 видов пластмасс к действию 262 химических реагентов. Данные о растворимости пластмасс и свойства важнейших растворителей приведены в литературе [16—20] . Эти данные являются лишь ориен- [c.10]

    Для повышения антикоррозионной стойкости цинковых покрытий последние подвергают пассивированию путем химической обработки в хромовых растворах, например хромовый ангидрид — 50—150 г/л, хлористый натрий — 5—50 г/л при комнатной температуре за 5—15 сек. Затем — промывка и сушка. За последнее время предложено окрашивать оцинкованные детали после хроматирования и промывки в растворах азо-, трифенилме-тановых и железных комплексных красителей I г/л дистиллированной воды. [c.355]

    Очень важным преимуществом пластических масс по сравнению, например, с металлами является высокая стойкость к действию воды и многих химических реагентов (растворов солей, кислот и щелочей). Поэтому некоторые пластмассы широко применяются в химическом машиностроении в качестве антикоррозионного материала, не требующего специальных защитных покрытий. Наибольшей химической стойкостью обладают политетрафторэтилен, полиэтилен, полиизобутилен, полистирол и полихлорвинил. На политетрафторэтилен не действует даже царская водка. [c.121]

    Основная область применения рения — жаропрочные сплавы. Хотя рений и уступает несколько по температуре плавления вольфраму, он имеет более высокую температуру рекристаллизации (1500° С против 1100° С у вольфрама) и превосходит вольфрам и прочие тугоплавкие металлы по своим механическим свойствам при высоких температурах [1]. Считается, что наиболее высокие механические качества при температуре порядка 2000—3000° С могут быть только у сплавов рения [2]. Из сплавов рения с молибденом, вольфрамом и другими металлами изготавливаются ответственные детали ракетной техники, а также сверхзвуковой авиации. Рений используется как легирующая присадка к жаропрочным сплавам на основе никеля, хрома, молибдена и титана. Другая область применения — антикоррозионные и износоустойчивые сплавы. Рений устойчив против действия расплавленных висмута и свинца при высокой температуре, что делает его перспективным материалом для атомных реакторов. Добавка рения к платиновым металлам увеличивает их износоустойчивость. Из таких сплавов делают, например, наконечники перьев автоматических ручек и фильтры для искусственного волокна. Из сплавов с добавкой рения изготовляют пружины и другие детали точных приборов. В силу химической стойкости рений применяется для покрытий, предохраняющих металлы от действия кислот, щелочей, морской воды, сернистых соединений. В электролампах и электровакуумных приборах рений может применяться для изготовления нитей накала, катодов и других деталей. Для этих же целей могут использоваться вольфрам и молибден, покрытые слоем рения. Рениевые и покрытые рением детали в несколько раз устойчивее обычных. Рений является ценным материалом для электрических контактов. Контакты из рения и его сплавов служат в несколько раз дольше, чем контакты из других материалов [3,4]. Представляет интерес применение рения для термоэлементов. Термопары с рением имеют в 3—4 раза большую электродвижущую [c.613]

    Одним из видов антикоррозионной защиты аппаратов является эмалирование. Эмаль представляет собой стекловидное покрытие, имеющее высокую химическую стойкость к кислотам и растворителям. Аппараты, подлежащие эмалированию, должны иметь простую конструкцию и плавные очертания. Недостаток эмалевого покрытия — небольшая прочность. Повреждение в одном месте приводит к быстрому разрушению всего покрытия, поэтому эмалированные аппараты требуют очень осторожного монтажа и бережной эксплуатации. Эмалирование можно применять для аппаратов, эксплуатируемых при температуре до 250° С. [c.29]

    Среди антикоррозионных защитных покрытий химического обо-рудовагшя наиболее эффективны покрытия из порошкообразных нэлнмериых материалов, в частности фторопластов. Они обладают высокими теплостойкостью, химической стойкостью, мехапиче-ской прочностью и износостойкостью. [c.70]

    Тантал — пластичный металл, способный вытягиваться в тончайшую проволоку. Благодаря высокой температуре плавления (3000°) и стойкости против коррозии, играет большую роль в современной технике. Химически очень устойчив. Не окисляется на воздухе. На тантал не действуют ни НС1, ни H2SO4, ни крепкие щелочи, ни даже царская водка при комнатной температуре. Поэтому он особенно пригоден для изготовления ответственных частей заводской химической аппаратуры. Тантал служит заменой платины при изготовлении электродов, а также хирургических и зубоврачебных инструментов. Сплав Nb + Та используется как надежное антикоррозионное покрытие. [c.491]

    Аминопласт (ГОСТ 9395—80) марок КФА1, КФА2 изделия, получаемые из него методом горячего прессования, стойки в слабых растворах кислот и щелочей. Стекло органическое конструкционное (ГОСТ 15809—70) устанавливают в люках и используют для изготовления различных деталей. Пентапласт (ТУ 6-05-1422—71), обладающий высокой химической стойкостью к кислотам, щелочам, органическим растворителям, применяют как антикоррозионное покрытие. Литьевые изделия из полиамидов, в том числе из капрона, стойки к воздействию углеводородов, органических растворителей, масел, щелочей, солнечной радиации в интервале температур —60. .. +70 °С (ГОСТ 10589—73). Поливинилхлориды, в частности винипласт, используют для изготовления пленочных и листовых материалов 102  [c.102]

    Коррозионная стойкость покрытня необходима, так как грунтовая вода (а для теплопроводов и материал теплоизоляции) может быть химически агрессивной по отношению к материалу защитного покрытия особое внимание должно уделяться щелочестойкости антикоррозионного покрытия, так как при катодной поляризации на катодных участках в результате накапливания гидроксильных ионов значительно повышается pH среды. Кроме перечисленных, покрытие должно обладать специальными свойствами, определяемыми усло- [c.22]

    На выбор антикоррозионного покрытия влияет не только химическая стойкость и физико-механические данные, но и уровень его надежности. Зачастую проектировщики, стремясь обеспечить покрытию максимальное количество наилучших свойств, неоиравданно включают дефицитные материалы, что ведет к завышению стоимости защиты. Так как арсенал средств защиты, удовлетворяющих требованиям данного покрытия, довольно разнообразен, выбор конкретного вида защиты должен производиться по его экономической эффективности, то есть по минимуму приведенных затрат  [c.75]

    Работоспособность антикоррозионного покрытия зависит не только от химической стойкости материалов, применяемых для антикорра-зиош-юй защиты, но и от выполнения специальных требований к реакционному и емкостному стальному и железобетонному оборудованию, газоходам и вытяжным башням — трубам. [c.128]

    Наряду с исключительной химической и термической стойкостью эти материалы обладают высокой адгезией к металлам, бетону, керамике, дереву и другим материалам, поэтому они могут успешно применяться для антикоррозионных покрытий, предназначенных для работы в агрессивных средах при повышенных температурах. Защитные покрытия из силитэна и андезитофторопласта могут применяться в виде плиток. [c.108]

    Фторопласт-3 выпускается в виде тонкого, рыхлого и легкосыпучего порошка. В отличие от фторопласта-4 он плавится при 210° С, поэтому его можно применять при температурах невыше 70°С. При комнатной температуре фторопласт-3 имеет более высокую твердость, чем фторопласт-4. (По химической стойкости фторопласт-3 незначительно уступает фторопласту-4, не смачивается водой и не набухает в ней поддается дрессаванию и может отливаться ПОД давлением. Фторопласт-3 получил применение как уплотнительный материал при высоких давлениях и как антикоррозионное покрытие в виде пленки, [c.64]

    Фторопласты, т. е. пластические массы на основе фтороргани-ческих соединений, выделяются среди органических конструкционных материалов исключительной химической и термической стойкостью. Наиболее известны фторопласт-3 и фторопласт-4. Фторопласт-4 — полимер тетрафторэтилена, т. е. полностью фторированного этилена, устойчив во всех растворителях, кислотах и щелочах. Он имеет высокую термическую устойчивость (до 250 °С) и стойкость по отношению к механическим воздействиям. Его применяют в виде труб и прокладок, деталей клапанов насосов. Фторопласт-3 является полимером трифторхлорэтилена, который в отличие от фторопласта-4 более легкоплавок (210°С), но не текуч на холоду. По химической стойкости в агрессивных средах фторопласт-3 уступает фторопласту-4, но удобен тем, что мохсет быть получен в форме суспензии для нанесения антикоррозионных покрытий. [c.143]

    Большинство пигментов антикоррозионного типа могут успешно употребляться с хлоркаучуком в качестве связующего. У каждого из них есть свои преимущества и недостатки [1, 2, 4, 6]. Так, металлический свинец и его соединения рекомендуются, когда требуется максимальная химическая стойкость, но свинец используется довольно редко из-за высокой стоимости, а свинцовый сурик — из-за его токсичности. В покрытиях на основе аллопрена может успешно применяться силикохромат свинца [10]. [c.208]

    Покрытия из фторсодержащих полимеров широко применяют в различных отраслях народного хозяйства в качестве антикоррозионных, электроизоляционных, антифрикционных, антиад-гезионных, абразивостойких. Покрытия сохраняют, в основном, свойства, присущие исходным полимерам, в том числе стойкость к агрессивным средам. Однако следует учитывать, что защитное действие покрытий от агрессивных сред определяется не только химической стойкостью полимера, но и диффузионной проницаемостью и адгезией покрытия к субстрату. Назначения и некоторые характеристики основных типов покрытий из фторопластов приведены пиже  [c.216]

    Высокая прочность растворных пленок ХСПЭ с аминоэпоксидными аддуктами после вулканизации достигается и после длительной вулканизации при комнатной температуре (5 сут при 20 °С). При использовании аддуктов л1-фенилендиамина с низкомолекулярной эпоксидной смолой Э-40 сопротивление разрыву растворных пленок ХСПЭ достигало 23,5—24 МПа при относительном удлинании 250—400%. Высо-кое сопротивление старению, атмосферостойкость, стойкость к действию различных активных химических реагентов позволяют применять растворные пленки ХСПЭ из вулканизатов ХСПЭ с аминоэпоксидными аддуктами в качестве покрытий и, в первую очередь, антикоррозионных покрытий по бетону и металлу [15, 16]. [c.141]

    Определены оптимальные соотношения компонентов и температурно-временные релшмы отверадения, обеспечивающие наи огчшие показатели прочности и химической стойкости. Разработаны также минераль-нонаполненные композиции. Использование фурано-эпоксидносланцевых материалов в качестве антикоррозионных покрытий дает существенный технико-экономический эффект за счет улучшения технологичности, снижения общей стоимости и повышения долговечности покрытий. [c.122]

    Эпоксидные смолы обладают очень хорошей адгезией к металлам, стеклу и другим неметаллическим материалам, включая пластмассы, высокой механической прочностью, хорошими диэлектрическими показателями, химической стойкостью в кислых и щелочных средах, во многих растворителях., Поэтому они находят широкое применение в качестве защитнЁгх антикоррозионных покрытий,, в химической, нефтяной и пищевой промышленности, в судостроении и теплоэнергетике, для борьбы с подземной коррозией и т. д. [c.192]

    Перхлорвиниловая смола обладает очень высокой химической стойкостью она применяется для антикоррозионных покрытий химической аппаратуры, для производства синтетического волокна (стр. 441V и т. д. , [c.175]


Смотреть страницы где упоминается термин Химическая стойкость антикоррозионных покрытий: [c.29]    [c.102]    [c.102]    [c.167]    [c.164]    [c.86]    [c.156]    [c.315]    [c.284]   
Энциклопедия полимеров том 1 (1972) -- [ c.173 ]

Энциклопедия полимеров Том 1 (1974) -- [ c.173 ]




ПОИСК





Смотрите так же термины и статьи:

Покрытия химические

Химическая стойкость антикоррозионных



© 2025 chem21.info Реклама на сайте