Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоновые кислоты идентификация

    В 1957 г. появилось весьма обстоятельное исследование высокомолекулярных нефтяных кислот, выделенных из фракции дистиллятного смазочного масла венесуэльской нефти [47 I. Автор применил большой комплекс современных методов разделения и идентификации высокомолекулярных соединений нефти, поэтому полученные им данные и сделанные на их основе выводы доказательны. Кислоты для исследования были получены в результате перегонки широкой фракции смазочного масла из венесуэльской нефти над едким натром. Остаток от перегонки состоял из приблизительно равных количеств натриевых солей карбоновых кислот и углеводородов. При обработке щелочного остатка разбавленной серной кислотой были выделены свободные карбоновые кислоты. Смесь этих кислот и углеводородов растворяли в бензоле и раствор фильтровали [c.320]


    В настоящее время этот метод используется для разделения, идентификации и количественного определения таких сложных веществ, как смеси углеводородов, ароматических карбоновых кислот, стероидов, гербицидов, пестицидов, антибиотиков, различных красителей и их полупродуктов, алкалоидов, различных компонентов нуклеиновых кислот. [c.69]

    В качественном анализе реакцию используют для идентификации карбоновых кислот. [c.88]

    Реакции аммонолиза и аминолиза производных карбоновых кислот имеют большое значение как в лабораторной практике, так и в промышленности. Выше уже указывалось на защиту аминогруппы от окисления (см. разд. Г, 5.1.3 и Г, 6.2.1) и на идентификацию аминов и карбоновых кислот превращением их в амиды. [c.89]

    При характеристике сульфокислот находят широкое применение методы идентификации карбоновых кислот. [c.319]

    Вследствие этого прежде чем выполнять основную задачу по идентификации, заключающуюся в определении строения поли-функционального органического вещества или идентификации компонентов бинарной смеси веществ (см. стр. 241), целесообразно отработать методы обнаружения функциональных групп, а также получения и очистки функциональных производных каждого из пяти важнейших классов органических соединений (спирты, фенолы, альдегиды или кетоны, карбоновые кислоты и амины). [c.224]

    Идентификация карбоновых кислот по ИК-спектрам достаточно надежна. Довольно быстро можно определить и количество карбоновых кислот. Корреляции карбоксильной группы приве- [c.328]

    I, Реагент для идентификации амииов и аминокислот. МЕТИЛ БЕНЗОФЕНОН-2-КАРБОНОВАЯ КИСЛОТА [c.329]

    I замещения может служить и-бромфенацилбромид (лакриматор ), который [ применяется для идентификации жидких карбоновых кислот в виде твердых эфиров. [c.67]

    При использовании крепких кислот и щелочей реакции рекомендуется проводить на предметном стекле, так как крепкие кислоты и щелочи разрушают бумагу. Часто для качественных реакций используют реактивные бумажки, пропитанные соответствующими реактивами и высушенные. Например, реактивные бумажки, пропитанные раствором сульфата меди, служат для идентификации сульфаниламидных препаратов, карбоновых кислот, барбитуратов. [c.38]

    В случае свободной карбоновой кислоты (например, бензойной) ее надо предварительно нейтрализовать 0,1 н. раствором гидроксида натрия (по фенолфталеину) до слабого розового окрашивания, после чего прибавлять раствор соли тяжелого металла. В случае идентификации соли карбоновой кислоты, например бензоата натрия, следует к ее раствору сразу добавлять раствор соли тяжелого металла. В том и другом случае образуется либо осадок, либо окрашенный раствор, цвет которого зависит от характера кислоты и реактива. [c.151]


    Наблюдаемую в ИК спектрах карбоновых кислот сравнительно интенсивную полосу поглощения у в области 1400—1420 см следует рассматривать как аналитическую при идентификации а-метиленовых фупп. [c.65]

    Эта реакция используется а) для синтеза карбоновых кислот и б) для идентификации алкилбензолов. [c.370]

    Соли карбоновых кислот, как и все соли, представляют собой кристаллические нелетучие вещества, состоящие из положительно и отрицательно заряженных ионов, и их свойства вполне соответствуют тому, что можно было ожидать для подобной структуры. Сильные электростатические силы, удерживающие ионы в кристаллической решетке, могут быть преодолены лишь путем нагревания до высокой температуры или использования очень полярного растворителя. Температура, необходимая для плавления, оказывается столь высокой, что еще до того, как она может быть достигнута, рвутся связи углерод — углерод и молекула разрушается обычно при температуре 300—400 °С. Температура разложения редко может быть использована для идентификации соединения, поскольку она скорее зависит от скорости нагревания, чем от свойств соединения. [c.555]

    После того как неизвестное вещество отнесено к классу карбоновых кислот, его дальнейшая идентификация возможна, как правило, на основании его физических свойств и физических свойств его производных. Обычно для этого используют амиды (разд. 20.11 и 23.6) и сложные эфиры (разд. 20.14). [c.578]

    Идентификация или доказательство структуры производного кислоты включает стадию идентификации или доказательства структуры карбоновой кислоты, образующейся при гидролизе (разд. 18.20), В случае сложного эфира необходимо также идентифицировать получающийся спирт (разд. 16.11). [Для замещенного амида (разд. 23.6) идентифицируют также образующийся амин (разд. 23.13).] [c.657]

    Для замещенных амидов карбоновых кислот характерно следующее наличие азота, нерастворимость в разбавленных кислотах и разбавленных щелочах и гидролиз до кислоты и амина. Обычно их идентифицируют путем идентификации продуктов гидролиза (разд. 18.20 и 23.13). [c.724]

    В некоторых случаях непредельные углеводороды идентифицируют в виде дибромпроизводных. Для идентификации ароматических углеводородов окисляют их боковые цепи и исследуют образовавшиеся карбоновые кислоты. Многие ароматические углеводороды исследуют в виде характерных кристаллических производных пикриновой кислоты. К шестичленным нафтенам применяют реакцию пербромирования по Густавсону — Коновалову, а ко всем насыщенным —нитрование по Коновалову разбавленной кислотой в запаянных трубках. [c.90]

    Нефтяные кислоты, выделенные из фракции дистиллятного смазочного масла венесуэльской нефти, исследованы Д. Кнотнеру-сом. Им использован комплекс современных методов разделения и идентификации высокомолекулярных соединений нефти, поэтому полученные данные и сделанные на их основе выводы достаточно достоверны [19, с. 322]. Установлено, что высшие нефтяные кислоты являются карбоновыми, карбоксильная группа которых соединена с углеводородными радикалами, аналогичными (по составу и строению) радикалам в углеводородах тех нефтей, нз которых кислоты выделены. В молекулах кислот содержатся циклопарафиновые, моноароматические, диароматические и серосодержащие углеводородные радикалы. Полиароматические карбоновые кислоты, в молекулах которых содержится более двух бензольных колец, в нефтях пока не обнаружены. [c.37]

    В очень небольших количествах в нефтях могут присутствовать и двухосновные карбоновые кислоты. На это указывают факты идентификации диметилмалеииовой кислоты,- ее ангидрида и [c.103]

    Для идентификации сложных смесей, нестабильных веществ, практически нелетучих высокомолекулярных соединений часто используют аналитическую реакционную газовую хроматографию — вариант, в котором хроматографический и химический анализ сочетаются в единой хроматографической схеме. Задача метода состоит в том, чтобы в результате химических реакций получить новую смесь, кор/поненты которой разделяются или идентифицируются лучще, чем компоненты исходной смеси. Широкое применение при этом находит метод вычитания, при котором проводят два хроматограсЬических анализа — исходной смеси до и после поглощения определенной группы компонентов. Таким способом можно, например, устанавливать наличие во фракциях непредельных углеводорсдов, селективно поглон1,ая их в реакторе с силикагелем, обработанным серной кислотой. Прп реакционной газовой хроматографии используются также реакции гидрирования и дегидрирования, этерификации (для анализа карбоновых кислот в виде эфиров), лиролиза высокомолекулярных соединений. [c.86]

    Особенно интересны опыты Монтгомери и Энтела, которые при декарбоксилировании выделенных из продуктов окисления карбоновых кислот получили такие соединения, как нафталин, дифенил, окись дифенила, а-, -, и уфенилпиридины, -нафтохинолин, фе-нантрен, метилнафталин, бензол с боковыми цепями, содержащими пять атомов углерода, бензофенон, инден. Так как окисление и декарбоксилированне осуществляются в условиях, исключающих усложнение ароматических ядер образованных кислот, идентификацию этих углеводородов необходимо рассматривать как доказательство присутствия в структуре углей конденсированных ароматических ядер, азота, входящего в циклические структуры, а также неконденсированных пяти- и шестичленных ядер [8, с. 156]. [c.168]


    Если анализируемый объект содержит соли разных карбоновых кислот, то полосы разных карбоксилатов налагаются в ИК-спектре поглощения друг на друга, что мешает однозначной идентификации каждого карбоксилата. В этих случаях предпочтительно использовать спсктры гзталонных образцов открываемых карбоксилатов. Например, при идентификации ацетата натрия полезно сравнивать спектр анализируемого образца с известным спектром ацетата натрия, при идентификации ацетата кобальта — с известным спектром ацетата кобальта и т. д. [c.576]

    Охарактеризовать сульфокислоты удается лишь через некоторые кристаллические производные. Для идентификации сульфокислот могут быть использованы многие методы, применимые для идентификации карбоновых кислот, но обш,его метода идентификации сульфокислот не существует. Наиболее удобными производными для идентификации сульфокислот являются их амиды и анилиды — легко кристаллизующиеся вещества, обладающие резкой температурой плавления. К сожалению, получение этих производных требует много времени, так как осуществляется через хлорангидриды, синтез которых иногда сопряжен с трудностями из-за неустойчивости сульфохлоридов или вследствие чувствительности некоторых групп (ОН, МНа и др.) к действию хлорангидризующих средств. Однако часто сульфохлориды (в отличие от хлорангидридов карбоновых кислот) являются вполне устойчивыми веществами с четкой температурой плавления. Значительно реже для идентификации сульфокислот пользуются их кристаллическими эфирами (феииловые и В-нафтиловые эфиры сульфокислот). [c.304]

    Амиды кислот, как правило, представляют собой хорошо кристаллизующиеся, легко очищаемые вещества. Поэтому они служат-для идентификации как первичных и вторичных аминов (преимущественно в виде ацет- и бензамидов, получаемых из соответствующих ангидридов или хлорангидридов), так и карбоновых кислот (в виде незамещенных амидов, анилидов, бензиЛамидов). Кислоты для этой цели выгодно сначала перевести в хлорангидриды (см. разд. Г, 7,1.5,4), и последние ввести в реакцию с аммиаком или анилином, В ходе качественного анализа карбоновые кислоты оказываются, однако, часто в водном растворе, В этом случае рекомендуется получать анилиды по следующей методике. [c.85]

    Образование амидов карбоновых кислот используется также 41ЛЯ идентификации аминов. В этих случаях используют описанные [c.88]

    При идентификации аминов соответствующие сульфамиды интересны потому, что с их помощью можно разделять смеси первичных, вторичных и третичных аминов (разделение по Гинсбер-гу). Сульфамиды из первичных аминов растворимы в водных щелочах с образованием солей, М-дизамещенные сульфамиды нерастворимы, третичные же амины не дают амидов ни с сульфо-хлоридами амидов, ни с хлорангидридами карбоновых кислот. [c.259]

    Для идентификации карбоновых кислот получают их амиды и жгилиды. КоЕ1Станты некоторых карбоновых кислот и их производных приведены в табл. 9. [c.238]

    Хлорид З-бензилтноурония образует с сульфокислотами и мно-П1 и[ карбоновыми кислотами труднорастворимые, хорошо кристаллизующиеся 5-бензнлтиоурониевуе соли, которые можно использован) для идентификации этих кислот. [c.279]

    Для идентификации карбоновых кислот часто используют способность карбоксильной группы замешать водород на остаток этилового нли метилового спирта с образованием сложного эфира. Реакция эта ускоряется в присутствии концентрированной серной кислоты или хлористого водорода. Карбоновые кислоты также идснтифниируют с помощью хроматографии на бумаге. В большинстве случаев в качестве растворителя используют спирт нли водный раствор аммиака, а в качестве индикатора, для обнаружения пятен, бромкрезоловый зеленый, бром1имоловь й голубой нли бромфеноло-вый голубой. [c.153]

    Общеизвестный способ этерификации ароматических карбоновых кислот спиртами в присутствии концентрированной серной кислоты неприемлем для получения высших алкил-нитробензоатов по той причине, что высшие спирты под действием серной кислоты легко окисляются и дегидратируются [3]. В связи с этим сложные эфиры нитробензойных кислот получают обычно взаимодействием хлорангидридов этих кислот с абсолютными спиртами. Эта реакция протекает настолько легко и гладко, что рекомендована для идентификации спиртов [4], однако применение ее для промышленного получения алкилнитробензоатов осложняется ядовитостью и сравнительно высокой стоимостью тионилхлорида, необходимого для синтеза исходных нитробензоилхлоридов. [c.90]

    Кислоты при действии винилфосфатов фосфорилируются. Один из самых реакционноспособных винилфосфатов ( XI), полученный из диэтилового эфира броммалоновой кислоты и триэтилфосфита, взаимодействует с различными карбоновыми кислотами при комнатной температуре с образованием соответствующих ацилдиэтил-фосфатов GXI1 [1181. При идентификации продукта реакции взаимодействием с аминами были получены с высокими выходами ацил-амиды, что указывает на отсутствие глубоких превращений реагентов. Это может, несомненно, объясняться отсутствием катализаторов основного характера. Следует отметить, что вторым продуктом реакции является малоновый эфир. При взаимодействии [c.116]

    Таким образом, за исключением кислот, содержащих четыре или меньшее число атомов углерода, которые растворимы и в воде и в органических растворителях, карбоновые кислоты и их соли щелочных металлов обладают прямо противоположными характеристиками растворимости. Поскольку взаююпревращение кислот и солей легко осуществимо, подобное различие в растворимости можно использовать в двух важных случаях для идентификации и для разделения. [c.555]


Смотреть страницы где упоминается термин Карбоновые кислоты идентификация: [c.39]    [c.31]    [c.41]    [c.141]    [c.293]    [c.322]    [c.272]    [c.116]    [c.158]    [c.207]    [c.144]    [c.151]    [c.304]   
Общий практикум по органической химии (1965) -- [ c.185 , c.190 , c.583 ]

Современные методы эксперимента в органической химии (1960) -- [ c.270 , c.272 , c.352 , c.448 ]




ПОИСК







© 2024 chem21.info Реклама на сайте