Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спирты идентификация

    К. Бауэр. Анализ органических соединений. Издатинлит, 1953, (488 стр.), В книге содержится описание методов открытия, идентификации и количественного определения важнейших классов и отдельных представителей органических соединений углеводородов, галогенопроизводных, спиртов, фенолов, эфиров, нитропроизводных, аминов, альдегидов, кетонов, кислот, углеводов, жиров, алкалоидов и др. По каждому классу дан обзор общих групповых реакций и описаны специфические методы открытия и количественного определения главных представителей класса. Каждая глава снабжена списком литературы. [c.492]


    Дибензоильное производное дифенилолпропана трудно растворимо в кипящем спирте и кристаллизуется из него в виде плоских блестящих игл (т. пл. 153,5 °С). Реакция образования этого производного может быть использована для идентификации дифенилолпропана. [c.41]

    В сернистых концентратах из арланской нефти в количестве менее 1 % от всей смеси найдены спирты, которым приписаны только насыщенные циклические структуры без олефиновых связей [664]. Если даже интерпретация полученных масс-спектров была верна, эти спирты не могут считаться нативными в связи с соображениями, высказанными нами при обсуждении фурановых соединений, описанных в той же работе. Сомнения в правильности идентификации классов соединений в этом анализе, на наш-взгляд, не [c.112]

    Найдя в спектре соединения полосы в области 800—1200 см" (углеродный скелет), полосы 3000 см" (связь С—Н) и полосу 3700 см" (связь 0-Н) согласно табл. 17, можно отождествить исследуемое соединение с алифатическим спиртом. Для многих молекул не только частоты, но еще более число полос поглощения, их форма и относительная интенсивность характерны так же, как для человека отпечатки пальцев. Поэтому ИК-спектры обычно используют для идентификации химических соединений. [c.177]

    В фармацевтическом производстве поляриметрию используют для идентификации лекарственных средств. Например, камфора, выделенная из камфорного базилика, дает правовращающий раствор в спирте с удельным вращением плоскости поляризации +8,6°. Камфора, выделенная из полыни, дает левовращающий раствор с удельным вращением плоскости поляризации —8,6°. Синтетическая камфора не вращает плоскость поляризации. [c.259]

    Выполнение работы. Включают прибор согласно инструкции. Устанавливают температуру термостата колонки 85°С, температуру термостата детектора 130°С, температуру испарителя 130 °С. Газ-носитель пропускают через колонку со скоростью 60 мл/мин, контролируя ее пенным расходомером. Подают токовую нагрузку на ДТП 130 мА. Указатель шкалы чувствительности устанавливают в положение 1 4 . После установления на хроматограмме стабильной нулевой линии в испаритель хроматографа поочередно вводят микрошприцем по 0,3 мкл каждого спирта. Каждое хроматографирование повторяют три раза. На хроматограмме измеряют для каждого спирта. Усредняя результаты трех параллельных измерений /д. рассчитывают 1/ по формуле (3.1), Для спиртов нормального строения строят графики зависимости lgV д = f( , М, Ткип)> где пс — число атомов углерода, М — молекулярная масса, Гкип— температура кипения. В испаритель хроматографа вводят микрошприцем 0,3 мкл анализируемого раствора. Измеряют по хроматограмме tл для каждого спирта. Рассчитывают Уц по формуле (3.1). Сравнивая Уп каждого спирта и смеси спиртов, идентифицируют компоненты пробы неизвестного состава. Правильность идентификации [c.197]


    Различные стероиды связываются друг с другом и с сапонином ди гитонином в молекулярные соединения. Аддукты Зр-оксистероидов (но не За-изомеров) с дигитонином, как правило, труднорастворимы в спирте и поэтому используются для идентификации и выделения соответствующих соединений. Сапонины обладают гемолитическими свойствами, тогда как нерастворимые аддукты холестерина с сапонинами такого действия не оказывают. Поэтому холестерин препятствует гемолитическому действию сапонинов в организме. [c.864]

    Метод идентификации п о л и в и и и л о в о г о спирта. Полимер растворим в воде и нерастворим в большинстве органических растворителей, в том числе и в спирте. Подкисленный водный раствор полимера окрашивается раствором иода в ярко-синий цвет. [c.288]

    Для идентификации поливинилацеталей проводят гидролиз полимера, нагревая его с раствором минеральной кислоты. Полиацеталь гидролизуется с образованием поливинилового спирта и альдегида. Последний окисляют до кислоты и идентифицируют. [c.292]

    Для характеристики кислоты часто превращают в сложные эфиры. Однако сложные эфиры низших алифатических спиртов в большинстве случаев жидкости и не представляют интереса для идентификации. Исключение составляют метиловые эфиры, которые во многих случаях являются твердыми веществами. [c.257]

    Выделенная из смеси кислот терефталевая кислота была идентифицирована по се способности к сублимацпи, нерастворимости в воде, спирте и эфире. Получена была также нерастворимая в воде ее бариевая соль. Идентификация терефталевой кислоты из смесп кислот ука.зывает иа наличие п-ксилола в норнйском бензине. [c.30]

    Гидрогенолиз применяют для определения строения углеродного скелета путем отщепления от анализируемой молекулы всех ее функциональных групп, этим методом широко пользуются для идентификации кислот, спиртов, альдегидов, кетонов, аминов, амидов, эфиров. [c.221]

    Для идентификации низших спиртов следует предпочесть п-нитробензоаты и 3,5-динитробензоаты, для приготовления которых используют соответствующие хлорангидриды. 3.5-Динитробензоаты образуются даже из третичных спиртов. [c.258]

    Производные для идентификации спиртов [c.132]

    При установлении строения химики широко пользуются методом частичной деструкции молекулы с последующим исследованием осколков. Полипептиды расчленяются на отдельные аминокислоты, гликозиды — на сахар и агли-кон, сложные эфиры — на спирты и кислоты. Здесь нередко используется метод прямой идентификации осколков сведением неизвестного к известному при помощи физических констант, табличных данных. [c.19]

    Выявление в молекуле определенных атомных группировок (функциональных групп и фрагментов углеродного скелета). Таким образом осуществляется отнесение исследуемого вещества к той или иной группе (классу) органических соединений классификация или групповая идентификация). В зависимости от возможностей метода и природы исследуемого объекта групповая идентификация осуществляется на разных уровнях а) отнесение к классу веществ с очень общей и неполной характеристикой структуры (циклоалкан, олефин, спирт, простой эфир, амин и т. д.) б) определение принадлежности к тому или иному гомологическому ряду (например, ряд бензола, предель- [c.5]

    Прежде чем приступить к анализу, нужно провести идентификацию спирта и кетона, которая осушествляется для определения, к какому из веществ в анализируемой смеси следует отнести дан- [c.267]

    Этот метод, приводящий к получению твердых производных спиртов, используется для идентификации первичных, вторичных и третичных спиртов. [c.249]

    Спирт ы. Средние или высшие алифатические спирты, насыщенные и ненасыщенные спирты терпенового ряда, жирноароматические и гидроароматические спирты. Идентификация в виде р-нитробензоильных производных (см. стр. 234) или превращение в уретаны действием нафтил- или фенил - изоцианата (см. также стр. 227, 229) при ненасыщенных спиртах — присоединение брома в среде сероуглерода. [c.249]

    В четвертой фракции с температурой кипения 164—170° предполагалось присутствие псевдокумола для идентификации последнего, фракция в количестве 0,87 г была пронитро-ваиа смесью серной и дымящей азотной кислот, как выше было описано. Образовавшееся интросоединение представляло собой застывшую смесь тяжелой маслянистой жидкости и кристаллов, которая была обработана бензолом. Нерастворимый в бензоле белый осадок был перекристаллизован несколько раз из этилового спирта. Нерастворимое в спирте [c.81]

    Разрыв связи С—С при окислении может происходить в любой точке молекулы, поэтому в оксидате содержатся продукты самого различного молекулярного веса. В оксидате были обнаружены и идентифицированы следующие летучие жирные кислоты муравьиная, уксусная, пропионовая, масляная,валерьяновая, капроновая и далее вплоть до 10 углеродных атомов в цепи. Водонерастворимые нелетучие кислоты представляют собой очень сложную < месь. Помимо жирных кислот, оксидат может содержать окси-кпслоты, лактоны, ангидриды, альдегидо-кислоты, кетоно-кислоты, альдегиды, спирты и простые эфиры [328—336]. Твердые кислоты более чем на 80% состоят из предельных соединений с молекулярным весом от 145 до 300 и на 50% — из соединений с числом углеродных атомов не выше 14 [339]. Сообщалось об идентификации миристиновой, пальмитиновой, стеариновой, арахиновой, лигно-цериновой и изоиальмитиновой кислот [340]. Образование двухосновных кислот незначительно, хотя янтарную кислоту удалось выделить из оксидата [341, 342]. Неокисленный остаток по впеш- [c.587]


    Для идентификации первичных, вторичных и третичных спиртов используют реактивы КМпО<. реактив Несслера, Н 50, и Ц. Пермангаиа" калия окисляет первичные спирты до альдегидов вторичные — до кетонов, причем выделяется МпОз с третичными спиртами не реагирует. Реактив Несслера восстанавливает только первичные и вторичные спирты. Сульфат ртути (П) дает окраску или осадок с третичными спиртами, а первичные или вторичные вызывают лишь помутнение. Проба с 1г особенно эффективна для раэличевия двух-и трехатомных спиртов двухатомные спирты растворяют Ь, раствор приобретает окраску от желтой до красно-коричневой. Трехатомные спирты Ь не растворяют. [c.209]

    Битум, являясь тя>Келой частью нефти, представляет собой чрезвычайно сложную смесь углеводородов и гетероорганичес-ких соединений самого разнообразного строения. Поэтому проблема идентификации всех составляющих битум соединений практически не разрешена. В то же время для решения многих задач оказывается достаточным определить содержание отдельных классов или групп веществ. Издавна общепринятым методом определения соединений различных классов и групп является разделение веществ по их избирательному отношению к растворителям и адсорбентам. Для разделения битумов известно большое число вариантов анализа, но в основе этих методов лежит выделение нерастворимой в н-алканах части и разделение растворимой части на силикагеле. По этому широко распространенному методу можно принять, что битум состоит из ас-фальтенов — соединений, нерастворимых в алканах С5—С7, смол — соединений, растворимых в алканах и десорбируемых с поверхности силикагеля бензолом или его смесью со спиртом, но не десорбируемых алканами, и масел — соединений, растворимых в алканах и десорбируемых указанными элюентами. [c.8]

    Выделяющуюся при реакции уксусную кислоту точно нейтра-ли.эуют разбавленным раствором щелочи. Продукты, образующиеся в растворе метилового спирта, характеризуются достаточной однородностью и хорошими выходами. В реакцию вступают даже транс-олефины, хотя и с невысокими выходами. Реакция не п])имепяется для количественного отделения и определения олефннов, а только для их выделения в чистом виде и в отдельных случаях — для идентификации. Продукты реакции олефинов с ук- [c.208]

    К настоящему времени подобраны стационарные фазы, позволяющие разделять методом ГЖХ ГАС практически любого класса и решать самые сложные стрз ктурные проблемы, вплоть до установления оптической конфигурации молекул (например, аминокислот [164], изоирепоидных жирных кислот и их эфиров [269]. Получены необходимые для идентификации экспериментальные данные по параметрам удерживания характерных для нефтей летучих ГАС, в том числе тиолов [270], диалкилсульфидов [271], тиацикланов [272], аминов [273, 274], производных пиридина и хинолина [274—276], свободных жирных [277] и ароматических [278] кислот и их метиловых эфиров, фенолов [279, 280], кето-нов [281], спиртов [282] и т. д. Выведены корреляции между хроматографическим поведением и строением ГАС отдельных типов. Надежность идентификации чисто газохроматографическими средствами можно значительно повысить путем изучения так называемых спектров хроматографического удерживания [283]. На основе характеристик удерживания идентифицирован, например  [c.34]

    Важнейшими задачами этих методов являются снижение полярности и повышение летучести соединений для облегчения их хроматографического разделения или введение в состав молекул специфических групп, характеристики которых орособствуют более надежной идентификации по масс-спектрам. Обширный рб-зор по современным методам перевода высококипящих ГАС (кислот, фенолов, спиртов и др.) в более летучие производные дан в работе [344]. [c.41]

    Разработан метод [167] для идентификации и определения гликолей, спиртов, гликолевых эфиров в углеводородном топливе с помощью ИК-спекгрометрии. 25 мл образца встряхивают с 5 мл воды в течение 5 мин для удаления из топлива присадки. Освобожденное от присадки топливо служит эталоном. По 5 мл эталонного и испытуемого топлива вносят в мерные колбы емкостью 25 мл и добавляют до метки четыреххлористый углерод. Снимают спектры полученных растворов на ИК-спектрометре в ячейке толщиной 1 см из хлористого натрия в области 3250—3800 см Если в бензине присутствует метанол или пропанол, то в спектрах появляются интенсивные полосы поглощения при 3400 см . Гексилен-гликоль, метоксигликоль, метнлцеллозольв определяют количественно по измерению поглощения полос соответственно 3537, 3610, 3607. Предварительно снимают калибровочные кривые. [c.194]

    Битум представляет собой чрезвьиайно сложную смесь углеводородов и гетероорганических соединений разнообразного строения, в основном не выкипающую при температурах перегонки нефти. Идентификация всех составляющих битум соединений невозможна. Но для решения многих задач оказывается достаточным определить содержание отдельных классов или групп веществ. Общепризнанным является разделение веществ по их отношению к растворителям и адсорбентам. В соответствии с этим битум состоит из асфальтенов — соединений, нерастворимых в алканах С -С,, смол — соединений, растворимых в алканах и десорбируемых с поверхности силикагеля бензолом или его смесью со спиртом, но не десорбируемых алканами, и масел — соединений, растворимых в алканах и десорбируемых указанными элюентами. Среди масел различают соединения парафиновой, нафтеновой и ароматической основы. [c.491]

    В тех случаях, когда имеются масс-спектры предполагаемых компонентов, проблема решается простым сопоставлением масс-спектров эталонов и неизвестного исследуемого соединения. Так, например, Браун, Юнг и Николейдис [73] исследовали масс-спектры первичных спиртов нормального строения С20—С33. Эти данные были использованы для идентификации высокомолекулярных спиртов, выделенных из жира человеческих волос. [c.118]

    Рекомендуется для идентификации кислот получать эфиры п-нитробензилового (I), фенацилового (И), п-хлор- и п-бромфена-циловых спиртов (П1, IV)  [c.257]

    У. Укажите реагенты для идентификации 1) С=С-связи, 2) аминогруппы, 3) ОН-группы спирта. а. 3%-иый раствор КМлО б. нсг в. Бромная вода Г УаОН д. Азотистая кислота е. Уа металлический [c.245]

    Растворители бывают легче воды (бензол, толуол, спирты бутиловый, амиловый, изоамнловый, диэтиловый эфир и др.) и тяжелее воды (хлороформ, четыреххлористый углерод, сероуглерод и др.). Тяжелые растворители удобнее, так как они, находясь под водой, не испаряются. В качественном анализе экстрагирование применяют для роданидов железа ( 78), кобальта ( 79), надхромовой кислоты ( 76), брома ( 90), иода ( 91). Эти элементы образуют экстрагируемые, ярко окрашенные соединения, используемые для их идентификации. Известно много других аналитических реакций с применением экстрагирования. [c.83]

    Г0 реак- спределительнои хроматографии. Rm— величина аддитивная, складывается нз констант, характеризующих определяемое вещество (каждый атом углерода, каждое звено цепи, гидроксилы первичного, вторичного, третичного спиртов, аминогруппы, кетогруппы, карбоксильные группы) и растворитель. Константа Rn позволяет предвидеть значения Rf для заданного вещества и определять структуру его молекул. Она постоянна для данного сорта бумаги и данного растворителя. Для надежной идентификации вещества константу R рекомендуют определять на одной и той же бумаге с несколькими разными растворителями. [c.524]

    Результаты наблюдений за изменением концентрации отдельных парамагнитных центров во времени представляют собой ценную кинетическую информацию. Использование струевой методики, позволяющей в течение длительного времени поддерживать концентрацию короткоживу-щих промежуточных продуктов на достаточном для измерения уровне, позволяет не только непосредственно наблюдать продукты, участие которых в ряде реакций до сих пор только постулировалось, но и в итоге получать константы скорости отдельных элементарных стадий реакции. В качестве примера укажем на идентификацию и изучение кинетического поведения Н, О, ОН, Р, С1, Вг в цепных реакциях, протекающих в смесях Нг- Ог, Рг + СаСЦ, р2 + СНзВг (газовая фаза). В жидкой фазе метод ЭПР был применен для изучения цепного окисления углеводородов, реакций радикала ОН с различными спиртами и т. д. [c.109]


Смотреть страницы где упоминается термин Спирты идентификация: [c.636]    [c.636]    [c.47]    [c.30]    [c.234]    [c.41]    [c.141]    [c.249]    [c.41]    [c.102]    [c.352]   
Препаративная органическая химия (1959) -- [ c.356 ]

Препаративная органическая химия (1959) -- [ c.356 ]

Реакции органических соединений (1939) -- [ c.115 ]

Общий практикум по органической химии (1965) -- [ c.196 , c.580 ]

Основные начала органической химии том 1 (1963) -- [ c.825 ]

Основные начала органической химии Том 1 Издание 6 (1954) -- [ c.726 ]

Молекулярный масс спектральный анализ органических соединений (1983) -- [ c.53 ]

Препаративная органическая химия Издание 2 (1964) -- [ c.362 ]




ПОИСК







© 2025 chem21.info Реклама на сайте