Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поляризация макроскопическая

    В конечном счете и построено любое вещество, смещаются друг относительно друга положительные заряды — по направлению поля, а отрицательные — в противоположном направлении. Смещение может происходить как на микроскопические, так и на макроскопические расстояния. Если диэлектрики содержат полярные молекулы, то они также будут ориентированы по направлению внещнего электрического поля. Все эти явления объединяют в одну группу и обычно называют поляризацией. [c.130]


    Векторная сумма всех индуцированных и постоянных дипольных моментов дает макроскопический электрический момент среды. Последний связан с поляризацией жидкого диэлектрика соотношением [c.116]

    Индуцированная поляризация проявляется и для веществ с постоянным дипольным моментом. Для последних надо, однако, принять во внимание, что макроскопическая поляризация постоянных диполей зависит от температуры, так как из-за теплового движения диполи отклоняются от направления, заданного электрическим полем. Для среднего момента постоянных диполей справедливо следующее выражение  [c.100]

    В решетке ионных кристаллов — чисто ионная связь, т. е. связь, для которой полный перенос электронов от катиона к аниону скорее исключение, чем правило. Лишь для кристаллов типа хлорида натрия можно говорить о полном переносе заряда. Интеграл перекрывания одноэлектронных орбиталей ионов натрия и хлора оценивается значением —0,06. Можно сказать, что это чисто ионная связь. По отношению к этому же соединению сопоставление энергии электростатического взаимодействия с энергией ковалентного взаимодействия (непосредственно связанной с тем,-что называют поляризацией электронной оболочки) показывает, что вклад электростатического взаимодействия значительно больше и составляет (по Коулсону) для хлорида натрия 8,92 эВ, в то время как соответствующее значение для ковалентного взаимодействия 0,13 энергия отталкивания в этом случае равна —1,03 эВ (энергия, называемая нулевой , т. е. нулевая колебательная энергия, равна всего —0,08 эВ и ее часто вообще не принимают в расчет). К ионным кристаллам относятся кроме соединений типичных галогенов со щелочными металлами также и некоторые оксиды, в частности оксиды кальция и магния, в которых по экспериментальным данным имеются отрицательные двухзарядные ионы кислорода. В большинстве случаев ковалентный вклад больше. Кристаллы алмаза, кремния, германия, карборунда, серого олова содержат прочные ковалентные связи, так что любую часть этих веществ вполне и без всяких оговорок можно рассматривать кан молекулу макроскопических размеров. [c.281]

    В области слабых полей поляризация Р пропорциональна напряженности макроскопического поля Е  [c.210]

    Вектор представляет собой средний макроскопический электрический момент, приходящийся на единицу объема жидкости. можно назвать собственной поляризацией диэлектрика. [c.41]

    Допустим теперь, что этот сферический образец находится внутри жидкого электрически нейтрального диэлектрика. Внешнее поле, как уже было сказано, отсутствует. Поляризованная сфера v будет воздействовать на молекулы окружающей ее жидкости они будут поляризоваться. Это приведет к изменению среднего макроскопического поля внутри сферы и изменению ее поляризации. Обозначим новые значения среднего макроскопического поля, электрического момента и поляризации в сфере v символами ё, М и Р соответственно. Реактивное поле, по определению, есть разность между ё и ё . Электростатический расчет [101 показывает, что [c.43]


    Межслоевая поляризация. Не вся энергия, теряемая, в диэлектриках, обусловлена запаздыванием при ориентации диполей даже те потери, которые соответствуют феноменологической теории, развитой выше, возможны из-за другой причины. Могут быть потери, обусловленные смещением электронов или ионов на макроскопические расстояния. В однородных веществах присутствие таких зарядов вызывает появление тока, возникают миграционные потери, о которых говорилось выше [см. формулу (625)]. В неоднородных веществах, состав которых таков, что проводящие части, входящие в них, не связывают непрерывным образом два электрода, установившийся ток в постоянном поле равен нулю поэтому наличие проводящих областей в веществе не всегда очевидно. Они проявляются, однако, при установлении стационарного состояния и в переменном поле. Заряды движутся через проводящие области и оседают на поверхностях, которые отделяют эти области от непроводящей среды. Поэтому каждая проводящая область в действительности представляет собой,, электрический диполь, момент которого добавляется к моментам, обусловленным поляризацией молекул. По этой причине и введен термин межслоевая поляризация. [c.361]

    Макроскопическое поле Е есть векторная сумма Е = Е + E внешнего поля 0 и поля Е обусловленного поляризацией вещества Р во внешнем поле  [c.258]

    Для исследования структуры и диэлектрических свойств сорбированной воды применяются различные физические и физико-химические методы, в частности диэлектрический метод. Сущность его заключается в измерении макроскопических характеристик поляризации диэлектрика во внешнем электрическом поле. В постоянном электрическом поле поляризация диэлектрика характеризуется статической диэлектрической проницаемостью е , в переменном — комплексной диэлектрической проницаемостью е = е —1г". Установление связи между экспериментально определяемыми характеристиками е , е, е" и молекулярными параметрами диэлектрика является основной задачей теории диэлектрической поляризации [639, 640]. [c.242]

    Особое место в характеристике растворителей занимает диэлектрическая проницаемость. Преимущества последней по сравнению с другими критериями связаны с простотой электростатических моделей сольватации, и поэтому диэлектрическая проницаемость стала полезной мерой полярности растворителей. В этой связи важно четко представлять себе, что именно отражает макроскопическая диэлектрическая проницаемость растворителя (называемая также относительной диэлектрической проницаемостью Ег = е/ео, где ео — диэлектрическая проницаемость вакуума, т. е. постоянная величина). Диэлектрическую проницаемость определяют, помещая растворитель между двумя заряженными пластинами конденсатора. В присутствии растворителя напряженность электрического поля между пластинами Е снижается по сравнению с напряженностью Ео, измеренной в вакууме, и отношение Ей Е представляет собой диэлектрическую проницаемость растворителя. Если молекулы растворителя не обладают собственным постоянным дипольным моментом, то под влиянием внешнего поля внутримолекулярные заряды разделяются, индуцируя диполь. В электрическом поле молекулы с постоянным или индуцированным диполем ориентируются определенным образом это явление называют поляризацией. Чем выше степень поляризации, тем сильнее падение напряженности электрического поля. Следовательно, диэлектрическая проницаемость непосредственно связана со способностью растворителя к разделению зарядов и ориентации собственных диполей. Диэлектрическая проницаемость органических растворителей изменяется приблизительно от 2 (в случае, например, углеводородов) до примерно 180 (например, у вторичных амидов) (см. приложение, табл. А.1). Растворители с высокой диэлектрической проницаемостью способны к диссоциации (см. разд. 2.6), и поэтому их называют полярными — в отличие от неполярных (илп аполярных) растворителей с невысокой диэлектрической проницаемостью. Диэлектрическая проницае- [c.99]

    Диэлектрики - термин, введенный М. Фарадеем и употребляемый для обозначения среды, в которой может длительно существовать электрическое поле. В диэлектрике внешнее электростатическое поле вызывает поляризацию атомов, молекул или ионов, совокупность электрических полей которых является отраженным полем поляризации. Это отраженное поле, в отличии от отраженного поля поляризации проводника, всегда меньше внешнего. Поэтому напряженность макроскопического поля в диэлектрике имеет конечное значение. Основной микроскопической характеристикой ди- [c.414]

    Структурная (макроскопическая, межслоевая) поляризация является дополнительным механизмом релаксационной поляризации, имеющей место в твердых телах с неоднородной структурой и при наличии примесей. Причинами поляризации является перемещение электронов или ионов в пределах отдельных включений под влиянием электрического поля. Такие включения приобретают дипольный момент и Ведут себя подобно гигантской поляризованной молекуле. [c.416]

    Наряду с рассматривавшейся выше пьезоэлектрической керамикой, которая обнаруживает макроскопический пьезоэлектрический эффект только после процесса поляризации, имеется также ряд монокристаллических веществ, которые являются пьезоэлектрическими в связи с особенностями своей внутренней структуры. Нижеследующие соображения, относящиеся к пьезоэлектрическим константам, характеризующим материал, распространяются и на все пьезоэлектрические вещества. Так как эти вещества используются для контроля материалов, главным образом, в форме пластин для возбуждения акустических колебаний и служат для их преобразования в электрические сигналы, их сокращенно именуют излучателями или преобразователями. [c.143]


    Ф. М. К у Н И (Научно-исследовательский институт физики Ленинградского государственного университета им. А. А. Жданова). При описании электрических свойств полярных сред, как известно, существенную роль играют такие понятия, как вектор поляризации Ро и диэлектрическая восприимчивость Обычно эти понятия относятся к макроскопическим, физически бесконечно малым элементам объема, в пределах которых свойства системы предполагаются однородными. В поверхностных слоях, однако, свойства меняются уже на расстояниях порядка молекулярных размеров, а предположение о локальной однородности не имеет места. Это значит, что понятия вектора поляризации и диэлектрической восприимчивости должны вводиться как локальные. Так, вектор локальной поляризации р (Г1) можно определить соотношением [c.248]

    Нужно отметить, что макроскопическая теория поляризации поверхности раздела все еще является справедливой даже для таких маленьких величин, как несколько десятков ангстрем. [c.362]

    Поляризация вещества определяется молекулярными параметрами дипольным моментом молекулы, ее поляризуемостью и числом молекул в единице объема. А такая важная макроскопическая величина, как диэлектрическая проницаемость (показатель преломления), в свою очередь связана с поляризацией вещества. Таким образом, устанавливается зависимость макроскопических параметров вещества от молекулярных, которую можно описать различными уравнениями, полученными для определенных моделей молекулярного строения вещества. [c.10]

    В формуле (6) - высокочастотный предел относительной диэлектрической проницаемости, отвечающей той части поляризации - 1)Еде , которую можно считать мгновенно реагирующей на изменения внешнего поля. Это приближение можно использовать для всех практических целей. Функция х(0 определяет характер затухания поляризации во времени после мгновенного снятия внешнего поля. Принято считать, что х( ) является экспоненциальной функцией времени, которая в простейших случаях содержит один параметр т, не зависящий от времени [см. уравнение (7)]. Параметр т обычно называют временем макроскопической релаксации, хотя термин "время затухания" был бы более подходящим, так как позволил бы избежать путаницы с термином "время микроскопической релаксации" Соотношение между т и т зависит от связи между внутренним полем Р (которое действует на молекулы) и приложенным полем Итак, [c.311]

    Обобщенная диэлектрическая проницаемость е = 8 + г б". является комплексной величиной, где вещественная часть г обусловлена деформационной и ориентационной проницаемостью или поляризацией, мнимая г" характеризует кинетику процесса установления ориентационной, дипольной поляризации, I — коэффициент при мнимой части. С макроскопической точки зрения в" является мерой диэлектрических потерь. По зависимости е и е" от частоты и температуры [c.280]

    В излагаемой теории не учитываются эффекты диэлектрического отображения вблизи иона и затухания в макроскопическом уравнении для поляризации в растворе проведено лишь приближенное рассмотрение относительного движения реагентов. Теория включает три основных предположения, общих для всех теорий. [c.306]

    Это уравнение описывает понижение свободной энергии системы при сближении противоположных зарядов вследствие поляризации диэлектрика электрическим полем заряда сферы. Уравнение (И) справедливо для сферы макроскопических размеров, однако оно явилось фундаментом многих физических теорий сольватации ионов. Если правую часть выражения (11) умножить на число Авогадро, то получается уравнение для стандартной энергии Гиббса сольватации иона радиусом г с зарядом Соответственно стандартная энергия Гиббса переноса этого иона между двумя растворителями с диэлектрическими проницаемостями е, и 2 равна [c.195]

    Битумы обнаруживают тенденцию к образованию максимума диэлектрических потерь при более высоких температурах. На основании своих более поздних исследований, проведенных на битуме, в котором он увеличивал содержание асфальтенов, Сааль [44] объяснил это явление эффектом Максвелла — Вагнера. В этом случае диэлектрик состоит из двух или более компонентов с различными диэлектрическими постоянными и проводимостями. В подобных системах обычно имеются такие носители зарядов, которые могут перемещаться в теле диэлектрика на определенное расстояние. Когда движение носителей зарядов задерживается (в результате их захвата в самом теле диэлектрика или на поверхности раздела либо в результате невозможности их разряда и отложения на электродах), наблюдается появление пространственных зар>дов [451, вызывающих искажение макроскопического поля. Это явление возникает также в результате поверхностной поляризации. [c.42]

    Из соображений симметрии следует, что имеет то же направление, что и 1 , так что интеграл в (И.25) и вектор 1 равнонаправлены, а именно вдоль оси 2. Следовательно, вектор поляризации Р в уравнении (П.25) тоже направлен вдоль оси 2,т. е. Р — Рг - Поляризация Рг Mgvh есть электрический момент единицы объема диэлектрика, имеющего диэлектрическую проницаемость е ,1. В изотропной среде Рг и напряженность среднего макроскопического поля равнонаправлены. потенциал поля ф связаны соотношением ёг = Отсюда, пользуясь уравнением (П.З), имеем [c.45]

    Диэлектрики. В идеальном диэлектрике нет зарядов, способных свободно перемещаться под влиянием внешнего электрического поля. Волновые функции электронов в диэлектрике почти полностью локализованы около атомных ядер. При наложении внешнего электростатического поля происходит поляризация, т. е. перераспределение положений электрических зарядов. Возникает поле поляризации, которое противонаправлено внешнему полю, но меньше его по абсолютной величине. В объеме занимаемом диэлектриком, под влиянием внешнего поля возникает среднее макроскопическое электрическое поле ё. В однородном изотропном диэлектрике оно равнонаправлено с полем д. О поле 1 говорилось ранее в гл. П. [c.162]

    В слабых полях поляризация пропорциональна макроскопической полю Р = у Е, где хесть макроскопическая восприимчивость вещества. [c.258]

    Сумма по состояниям, называемая иногда функцией распределения , является безразмерной величиной. Как это следует уже из названия, она в удобной математической форме описывает способ распределения энергии системы между отдельными молекулами (т. е. распределение энергии по состояниям системы). Ее численное значение зависит от молекулярного веса, температуры, объема системы, межмолекулярных расстояний, от характера движения молекул и от межмолекулярных сил. Для систем, содержащих большое число молекул, сумма по состояниям представляет собой наиболее удобную величину, связывающую микроскопические свойства отдельных молекул (т. о. такие свойства, как расиоложение дискретных уровней энергии, моменты инерции и динольные моменты) с макроскопическими свойствами (такими, как мольное теплосодержание, энтропия, поляризация). [c.308]

    В заключение следует подчеркнуть, что электростатин ская теория эффектов растворителей оказалась очень полезной, при изучении и расчете кинетики разнообразных реакций в. растворах. Однако, несмотря на некоторые достижения такого подхода, ему все же присущ один принципиальный недостаток, обусловленный пренебрежением множеством других типов взаимодействия растворителя с растворенными веществами, в том числе взаимной поляризацией ионов или биполярных молекул, специфической сольватацией и другими, а также возможностью отклонения локальной микроскопической диэлектрической проницаемости в непосредственном окружении реагирующих частиц от макроскопической диэлектрической проницаемости среды. Расхождения между экспериментальными и расчетными данными, а также тот очевидный факт, что диэлектрическую проницаемость нельзя рассматривать как единственный параметр, обусловливающий изменение скорости химических реакций в растворах, явились причиной разработки различных полуэмпирических урав- [c.297]

    Это подтверждается численными исследованиями Страли [ 11 ] которые дают s = 0,7 0,1 для трехмерных систем. Макроскопическая поляризация Р связана с полем дХ/дх посредством [c.245]

    Эту асимптотику удобно записать в терминах тензора диэлектрической восприимчивости X (гх), который определяется как множитель пропорциональности между вектором локальной поляризации Р (гх) и вектором напряженности макроскопического электрического поля внутри однородной фазы а  [c.48]

    Одной из проблем исследования диэлектрических свойств сорбированной воды является определение ее диэлектрической проницаемости. Для оценки величины диэлектрической проницаемости сорбированной воды обычно применяются формулы Бруггемана, Лоренца (Оделев-ского), Вагнера и др. Однако все эти соотношения применимы для смесей, не содержащих в качестве одного из компонентов сильнополярное вещество, каким является вода. Более применима для этих целей теория Онзагера — Кирквуда — Фрелнха, предложенная для полярных диэлектриков. При малой влажности у частиц материала нет двойного электрического слоя противоионов, поэтому можно не учитывать низкочастотную диэлектрическую дисперсию [49]. Однако определение диэлектрической проницаемости осложняется тем, что сорбированная вода, как отмечалось, находится внутри пор в виде не связанных между собой микровключений — ассоциатов. В связи с этим нельзя определять макроскопические (массовые) характеристики сорбированной воды (в частности, ее диэлектрическую проницаемость). Строго говоря, необходимо искать не диэлектрическую проницаемость сорбированной воды, а молекулярные характеристики (дипольный момент сорбированных молекул, энергию активации поляризации) и определять взаимное положение и ориентацию соседних молекул воды внутри ассоциатов. [c.74]

    Наиболее удобным методом изучения жидкокристаллических структур является исследование с помощью поляризационного микроскопа. Обычно изучаются тонкие пленки, помещенные между предметными стеклами. В некоторых случаях для исследования делаются также срезы тонких слоев твердого образца. Макроскопический ориентационный порядок, существующий в образцах, обеспечивает характерные структуры, которые широко описаны в литературе. Помимо этого метода, для исследования ориентационных корреляций на макроскопическом уровне применялись методы светорассеяния [31, 32]. Наблюдавшееся рассеяние являлось главным образом результатом корреляций в ориантации анизотропных элементов. Количественный анализ формы кривой рассеяния и поляризации рассеянного света дает информацию о размерах, форме и расположении коррелированных участков. [c.26]

    Спектры кристаллов. Инфракрасный дихроизм. Спектр монокристалла в поляризованном свете зависит от ориентации кристаллографических осей относительно плоскости поляризации падающего пучка лучей. То же относится и к макроскопически ориентированным высокополимерам, которые получают экструзией или растяжением таких полимерных материалов, как нейлон, поливиниловый спирт, полиэтилен. Впервые систематические исследования ИК-ДИхроизма в системах с Н-связью провел Эллис с сотрудниками [604, 779, 780]. В дальнейшем этот метод применяли Манн и Томпсон [1334], Крукс [463], Эмброз, Эллиот и Темпль [595, 38, 589, 4]. [c.104]

    Принимая во внимание приведенные выше результаты, можно предположить, что реакции обмена происходят не прямым обменом электроном, а сопровождаются переносом атома. Отсутствие совпадения между экспериментально полученными и теоретически рассчитанными данными, однако, не является доказательством того, что здесь нет прямого обмена электроном. Платцман и Франк [18] считают, что теория Христиансена — Скэтчарда справедлива только при больших расстояниях между реагентами. Явление поляризации значительно изменяет диэлектрические свойства среды. Следовательно, как было указано Платцманом и Франком, а также Амисом и Джаффё [19], использование значения макроскопической диэлектрической проницаемости среды при относительно небольших расстояниях между реагентами в активированном комплексе теряет смысл. Вейсс [3] в своей теории процесса переноса электрона попытался учесть этот фактор. Он полагает, что в значение энергии активации реакции входит только величина энергии взаимодействия реагентов в конечном состоянии, а именно в состоянии активированного комплекса, В этом случае при теоретических расчетах следует рассматривать только оптическую диэлектрическую проницаемость (квадрат показателя преломления), а не макроскопическую диэлектрическую проницаемость среды. Однако при этом очень важно знать диэлектрические свойства среды в больших потенциальных полях. [c.90]

    Возбужденные атомы или молекулы (активные частицы), возвращаясь в равновесное состояние, отдают в окружающую среду большую или меньшую часть полученной энергии возбуждения в виде излучения, испущенного ими самопроизвольно, спонтанно (люминесценция) оставшаяся часть энергии безызлучательно, в соударениях частиц, преобразуется в тепловую энергию системы. Однако, если в среде, содержащей активные частицы (активной среде), в течение времени жизни возбужденного состояния частиц распространяется световая волна, частота которой равна частоте излучательного перехода частиц из возбужденного состояния, эта волна стимулирует (вынуждает) возбужденные частицы испустить излучение. Световые волны, возникающие в процессе такого вынужденного исиускания, когерентны как между собой, так и со стимулирующей волной. Это значит, что частоты и фазы колебаний наиряженности электрического поля и состояния поляризации этих волн совпадают, а интенсивность суммарной волны возрастает в зависимости от числа активных частиц, принявших участие в процессе вынужденного испускания. Очень важно, что испускать когерентные волны могут частицы, разнесенные в среде на макроскопические расстояния друг от друга. Активная среда, таким образом, может занимать более или менее значительный объем, содержащий большое количество активных частиц, что и обеспечивает получение высоких интенсивностей лазерного излучения. [c.163]

    Зачастую полосы обладают структурой, не имеющей отношения, к наличию или отсутствию таутомерного равновесия (резоцанс Ферми, комбинации с низкочастотными колебаниями). Поэтому достоверность выводов о структуре комплекса, которые можно сделать при исследовании только полос у(АН), обычно невелика. Таюке, видимо, нельзя использовать величину химического сдвига активного протона в спектре ЯМР в качестве единственного критерия структуры комплекса (молекулярной, ионной или таутомерией). И тем более нельзя ограничиваться измерением каких-либо макроскопических характеристик растворов (диэлектрической поляризации, электропроводности, теплоты смешения и т. д.) Иллюстрацией могут служить противоречивые суждения различных авторов, сделанные подобным путем, относительно строения комплексов трифторуксусной кислоты с пиридином или алифатическими аминами в малополярных растворителях (как уже отмечалось, эти комплексы имеют ионную структуру [34, 37, 39]). Например, в [50, 51], комплекс СРзСООН—пиридин рассматривается как молекулярный комплекс с водородной связью, в [50] допускается возможность симметричной структу-рыЛ- -Н- -В, а в [31] предполагается существование таутомерного равновесия между молекулярной и ионной формами. [c.220]


Смотреть страницы где упоминается термин Поляризация макроскопическая: [c.120]    [c.11]    [c.288]    [c.140]    [c.180]    [c.227]    [c.120]    [c.7]   
Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень (1999) -- [ c.258 ]




ПОИСК







© 2025 chem21.info Реклама на сайте