Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дебая силы

    Формула (3.8) является аналогом закона Ома силе тока соответствует дебит, электрическому потенциалу-функция Лейбензона, и по аналогии с электрическим сопротивлением знаменатель формулы (3.8) 7 12, т.е. выражение (3.9). называют фильтрационным сопротивлением. [c.64]

    Массовый дебит потока будет одним и тем же во всех зонах в силу установившегося движения  [c.96]

    Аналогом объемного расхода д служит сила тока, а аналогом разности фильтрационных потенциалов-разность электрических потенциалов. Суммарный дебит прямолинейной цепочки из п скважин [c.114]


    Трудности количественной проверки полученного соотношения весьма многочисленны. Прежде всего, применяя предельный закон Дебая — Хюккеля, необходимо измерять скорости реакции в области низких значений ионной силы. Это значит, что ионная сила раствора должна быть меньше 0,01 М для 1 1 электролитов и меньше 0,001 М для ионов высокой валентности. Но в этом интервале изменения ионных сил константы скорости должны изменяться на 20—50% во всем доступном интервале концентраций. [c.450]

    Метод Бьеррума содержит те же упрощения, что и модель Дебая— Хюккеля, в частности в отношении точных методов подсчета энергии пар ионов на малых расстояниях, когда, несомненно, большую роль играет молекулярная структура.. Тем не менее эта теория представляет значительный шаг вперед и дает удобную основу для оценки взаимодействий между ионами. Фуосс [51] рассмотрел вопрос о произвольном выбо ре критического расстояния г в и показал, что любое расстояние, на котором сила взаимодействия ионов составляет величину около 2кТ, дает аналогичные результаты. Фуосс совместно с Краусом применили описанную выше теорию к случаю диссоциации сильных электролитов в среде с меняющейся диэлектрической проницаемостью [52]. Было получено весьма хорошее совпадение теоретических расчетов и экспериментальных определений электропроводности. [c.453]

    Как видно из электростатической теории электролитов, зависимость lgY от корня квадратного из ионной силы является линейной. Это было подтверждено многочисленными экспериментальными исследованиями электролитов с очень малыми концентрациями. Из всего сказанного следует, что уравнение (XVI, 48) справедливо лишь для сильно разбавленных растворов, так как при выводе уравнения для потенциала ионной атмосферы были сделаны некоторые существенные математические упрощения и физические предположения. Уравнение (XVI, 48) называется предельным уравнением Дебая—Гюккеля для Коэффициент А зависит от температуры (непосредственно и через диэлектрическую проницаемость О). Проверка [c.413]

    Легко видеть, что выражение (1.268) является частью одного из слагаемых в соотнощении, определяющем структуру движущей силы (1.261). Условия (1.269) получены для случая неподвижных пластин и являются частным случаем условия (1.267). Из совместного рещения уравнений (1.267) сначала определяется А как функция параметра Дебая, константы Гамакера, кинетического взаимодействия частиц, затем полученная зависимость для А подставляется в первое уравнение системы (1.267) (учитывая зависимость параметра Дебая от концентрации раствора электролита) и определяется значение концентрации (порог концентрации), при постижении которого начинается коагуляция (агрегация). [c.85]


    Рассматривая зависимость компонентов движущей силы от к, замечаем, что для работы силы отталкивания она имеет экспоненциальный характер, для работы силы притяжения — степенной, третий член вовсе не зависит от к. При к->-0 работа силы отталкивания стремится к постоянной величине, тогда как работа силы притяжения стремится к бесконечности. Следовательно, на малых расстояниях преобладает притяжение. На больших расстояниях также преобладает притяжение, поскольку степенная функция убывает значительно медленнее, чем экспонента. Только на средних расстояниях может преобладать отталкивание при малых значениях параметра Дебая (при больших в сильных растворах электролитов силы отталкивания малы) [27]. На этих средних расстояниях, где из энергий взаимодействия преобладает работа силы отталкивания, вопрос об агрегации решает связь с третьим слагаемым. Если оно меньше по величине работы силы отталкивания на этих расстояниях, то система становится агрегативно устойчивой (т. е. частицы сближаются до расстояния к, но не могут преодолеть сил отталкивания и расходятся без взаимодействия), если больше, то агрегация возможна. [c.86]

    Рассчитайте растворимость хлорида серебра в 0,01 т водном растворе HNO при 25 С. Воспользуйтесь справочными значениями ПР хлорида серебра. Воспользуйтесь предельным законом Дебая — Гюккеля. Влиянием концентрации хлорида серебра на ионную силу аствора можно пренебречь. [c.209]

    Предельный закон Дебая справедлив для узкой области концентраций (сильно разбавленные растворы) в связи с приближениями физической модели раствора (точечные заряды и т. п.) и математическими допущениями при выводе. Предельный закон в водных растворах соблюдается лишь в растворах с ионной силой порядка 10" и меньше, т. е. в 0,01 М и более разбавленных растворах 1,1-валентных электролитов (рис. 164). Еще ниже опускается концентрационная граница применимости предельного закона для неводных растворов с низкой диэлектрической проницаемостью. Однако этот закон имеет [c.441]

    Выведем выражение для осмотического коэффициента. Связь осмотического коэффициента и коэффициента активности описывается уравнением (132.19). Для 1,1-валентных электролитов величина ионной силы совпадает с моляльностью / = т и, если для коэффициента активности ограничиться предельным законом Дебая, то [c.444]

    При постоянной ионной силе, созданной фоновым электролитом, произведение коэффициентов активности (157.10) остается постоянным, и в этих условиях концентрационная константа устойчивости (157.9) также сохраняет постоянство при изменении концентрации реагентов. Применимость концентрационных констант, естественно, ограничена той ионной силой и средой, в которой было проведено их определение. Для получения термодинамической константы равновесия Р° произведение коэффициентов активности в (157.10) выражают с помощью уравнений теории Дебая — Хюккеля. Часто для этой цели используется, например, уравнение Дэвис (156.12) в форме [c.445]

    Дебаем и Онзагером предложена теория электрической проводимости растворов, представляющая собой развитие основных положений электростатической теории растворов (см. 156). По теории Дебая — Онзагера снижение эквивалентной электрической проводимости при переходе от бесконечно разбавленного раствора к растворам конечных концентраций связано с уменьшением скоростей движения ионов. Это объясняется появлением эффектов торможения движения ионов, возникающих за счет сил электростатического взаимодействия между ионом и его ионной атмосферой. [c.461]

    Предельное уравнение Дебая и Гюккеля зависимости среднеионного коэффициента от ионной силы I раствора имеет вид [c.293]

    Электростатическая теория разбавленных растворов сильных электролитов, развитая Дебаем и Гюккелем в 1923 г., позволила теоретически вычислить средний коэффициент активности электролита, эквивалентную электропроводность сильных электролитов, а также теоретически обосновала правило ионной силы. При этом они сделали ряд предположений, справедливых только для предельно разбавленных растворов. Во-первых, они предположили, что единственной причиной, вызывающей отклонение свойств раствора электролита от идеального раствора, является электростатическое взаимодействие между ионами. Во-вторых, они не учитывали размеров ионов, т. е. рассматривали их как безразмерные точечные заряды. В-третьих, электростатическое взаимодействие между ионами они рассматривали как взаимодействие между ионом и его ионной атмосферой. Ионная атмосфера — это статистическое образование. [c.251]

    Уравнение (VII, 50) применимо только к сильно разбавленным электролитам и называется предельным законом Дебая — Гюккеля. При данной ионной силе раствора средний коэффициент активности электролита в предельно разбавленном растворе является величиной постоянной и не зависит от природы других электролитов в растворе. Таким образом, в предельном законе Дебая — Гюккеля получает теоретическое обоснование правило ионной силы. [c.254]


    В разбавленных растворах зависимость коэффициента активности иона от ионной силы раствора описывается уравнением Дебая—Гюккеля (1.2) [c.126]

    Рассеяние света жидкостями вообще и растворами полимеров в частности обусловлено флуктуациями плотности вследствие теплового движения частиц. Флуктуации плотности раствора приводят к оптической неоднородности среды. Появляются статистические флуктуационные образования, объемы которых малы по сравнению с величиной длины волны падающего света, взятой в третьей степени (Х ). Такие образования обусловливают возникновение осмотических сил, стремящихся к уравниванию свойств системы в каждой точке раствора. Степень рассеяния монохроматического света раствором (мутность) -г связана с осмотическим давлением реального раствора следующим соотношением, известным как уравнение Дебая  [c.50]

    В дальнейшем выяснилось, что ассоциации могут подвергаться также одноименно заряженные Hotibi, обладающие большими р ззмерами и малыми зарядами, как, папример, ионы органических красителей, пикраты, перхлораты и др. Очевидно, что в этом случае за ассоциацию ответственны не кулоновские, а близкодействующие, в частности дисперсионные, силы. Эти силы не учитываются теорией Дебая — Гюккеля, и ее приложимость к таким — переходным к коллоидным—системам должна быть весьма ограниченной, что подтверждается опытными данными. [c.98]

    Некоторое представление о прим(Л1им( стп предельного закона Дебая — Гюккеля и ряда других уравнений для расчета коэффициентов активности дает табл. 3.9. Очевидно, что уравнение (3.80) и особенно (3.81) можно использовать для расчета средних коэффициентов с ошибкой менее 1 7с, вплоть до иной силы, рав-но11 0,1. [c.99]

    Для проведения расчета можно использовать модель раствора, предложенную Дебаем и Гюккелем, согласно которой каждый ион окружен ионной атмосферой со знаком заряда, противоположным заряду центрального иона. Так как сильные электролиты диссоциированы полностью (а = 1), то все изменения молярной электропроводности с концентрацией обусловлены изменением энергии взаимодействия. Тогда в бесконечно разбавленном растворе, где ионы настолько удалены друг от друга, что силы взаимодействия между ними уже не могут проявляться, ионная атмосфера не образуется, и раствор электролита ведет себя подобно идеальной газовой сн-сгсмс, В этих условиях молярная электропроводность электролита будет наибольшей и равной .  [c.121]

    Эта величина не меньше энергии, рассчитанной для диполь-диполь-ного взаимодействия . Индуцированный дииоль около 1 дебая. Хотя взаимодействия ион — молекула могут и не отличаться ио величине от ион-дипольного взаимодействия, но они гораздо сильнее уменьшаются с увеличением расстояния между ионом и молекулой, а потому не могут рассматриваться как силы, действующие на большом расстоянии. Важно также отметить, что поляризация всегда вносит некоторый вклад в общее взаимодействие между частицами. Взаимодействие между ближайшими частицами только за счет эффекта поляризации может составлять несколько килокалорий. [c.446]

    Что касается первичного солевого эффекта, то его можно объяснить лищь на основании теории сильных электролитов Дебая — Гюккеля (см. гл. XVI, 5). Введение соли, не содержащей общих ионов с компонентами смеси, изменяет ионную силу (см. гл. XVIII, 17) раствора, вследствие чего изменяются степени диссоциации веществ и концентрации катализирующих реакцию частиц. [c.290]

    Вариант решения с учетом ионной силы раствора. Активность сульфат-иона н 0,01 М растворе КгЗО, (р = 0,03) составляет 0,01 0,51 моль/л, где 0,51 — коэффициент активности, вычисленный по формуле Дебая и Гюккеля (с. 107). Растворимость ЗгЗО, а воде равна V3,2 10 = 5,6- 10 моль/л. После прибав-- ения КгЗО, растворимость ЗгЗО, понизится и примет значение 5 моль/л. Тогда активность ионов 5г + составит 0,51 5 моль/л, а ионов 505 — (5-ь0,01 0,51) моль/л. Вели на ПР остается постоянной, следовательно, [c.121]

    Инерционный грохот (см. рис. 7.10, в) состоит из сита 3, установленного на пружинах 4, и вращающегося вала 5 с деб. лансами 6. Траектория движения сита —эллине, близкий к окружности. Для инерционного грохота характерно отсутствие строгой кинематической определенности траектории движения сита. Траектория определяется такими факторами, как величина, направление и чгстота колебаний вынуждающей силы, масса движун ихся частей и жесткость упругих элементов. В зависимости от направления вынуждающей силы колебания сита могут быть близки к круговым или линейным. [c.214]

    Электропроводность растворов можно измерять с высокой точностью только в разбавленных растворах. В этом случае выполняются требования теории межионного взаимодействия Дебая — Гюккеля— Онзагера и зависимость X—Ус линейна для 1—1-валентного электролита (в то время как зависимость 7—с —не линегаа — см. рис. 2.1). Отклонение от линейной зависимости к—Ус свидетельствует об образовании ассоциатов, ионных пар. На практике линейная зависимость реализуется только для растворов электролитов в отсутствие примесей ионного характера. В силу этих причин, как указывалось ранее, следует отдавать предпочтение методу кондуктометрического титрования, а не прямой кондуктометрии. [c.104]

    Выражение (17) выведено Ланжелье [3], исходя из допущения, что выражения для К и содержат концентрации (в моль/л), а не активности. Если — произведение растворимости, содержащее активности ионов, то где v — среднеионный коэффициент активности СаСОз. Для коэффициента активности Ланжелье с использованием теории Дебая—Хюккеля выведено выражение —Ig у = где ц — ионная сила, а г — валентность. Следова- [c.408]

    В разбавленных растворах коэф шциент активности иона не зависит от природы самого иона и природы присутствующих в ]застворе других ионов, а определяется лишь ионной силой раствора. Согласно теории растворов сильных э.яектролитов Дебая — Гюккеля, величина коэффициента активности / иона с зарядом г определяется уравнением  [c.33]

    Одним из наиболее простых методов ингибирования скважин является закачка ингибитора в продуктивный пласт. Этот метод применяют на многих месторождениях природного газа на Северном Кавказе, в Узбекистане и в Туркменистане. Он не требует использования специального оборудования. Закачку ингибитора осуществляют в четыре этапа с помощью обычных цементировочных агрегатов. Ингибитор коррозии продавливают в продуктивный пласт в жидком виде. В качестве продавочной жидкости используют, как правило, углеводородный конденсат, который, в случае необходимости, может быть заменен водой. В технологии ингибирования данный метод называют методом сплошной закачки ингибитора в продуктивный пласт. В силу своей простоты он незаменим в условиях бездорожья, отсутствия централизованной сети ингибиторопро-водов и электроэнергии. Однако реализация метода может существенно влиять на дебит газовой скважины. [c.225]

    Несколько лет назад Миньоле [38] установил, что металл также вызывает поляризацию молекул, адсорбированных на его поверхности. При измерениях контактных потенциалов им было обнаружено, что даже неполярные молекулы, адсорбированные на nOiBepxHO TH металлов чисто физическими силами адсорбции, обнаруживают довольно заметные дипольные моменты. Так, например, он нашел, что при адсорбции ксенона на поверхности никеля происходит изменение потенциала на 0,85 в. Предполагая, что в этом случае образуется сплошной адсорбционный слой ксенона, Миньоле сделал вывод, что каждый атом ксенона приобретает индуцированный дипольный момент ц, равный 0,42-Ю ЭЛ. ст. ед. (0,42 ед. Дебая). Эти диполи ориентируются таким образом, что их положительные концы направлены в противоположную сторону от адсорбирующей поверхности. [c.40]


Смотреть страницы где упоминается термин Дебая силы: [c.113]    [c.91]    [c.93]    [c.127]    [c.272]    [c.56]    [c.109]    [c.41]    [c.97]    [c.392]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.2 , c.15 , c.29 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.15 , c.29 ]

Газовая хроматография в практике (1964) -- [ c.37 ]




ПОИСК





Смотрите так же термины и статьи:

Газовая хроматография силы Дебая

Дебай

Дебая, силы силы, действующие

Дебая, силы силы, действующие в растворе

Применение теории Дебая — Хюккеля при изучении зависимости константы равновесия адсорбции и скорости десорбции фермента с замещенных гелей от ионной силы

Силы, действующие в растворе индукционные Дебая



© 2025 chem21.info Реклама на сайте