Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Притяжение индукционное

    Выделяют и третий тип межмолекулярного взаимодействия— индукционное, приводящее к проявлению индукционного эффекта. Суть этого эффекта состоит в том, что электрическое поле одной молекулы усиливает диполь второй молекулы, что приводит к росту сил притяжения. Индукционное взаимодейст- [c.73]

    Природа дисперсионного взаимодействия двух неполярных молекул с позиций квантовой механики заключается в том, что случайные флуктуации электрического поля молекулы приводят к появлению переменного диполя, способного индуцировать диполи в соседних молекулах. Существенной особенностью дисперсионных сил притяжения в отличие от ориентационных и индукционных является их аддитивность в отношении парных взаимодействий молекул. Согласно микроскопическому подходу, развитому Г. Гамакером [25], при определенных допущениях расчет энергии дисперсионного притяжения ( д) произво- [c.17]


    Индукционный эффект связан с процессами поляризации молекул диполями окружающей среды. При этом в неполярной молекуле центры тяжести положительных и отрицательных зарядов перестают совпадать. Возникает наведенный, или индуцированный, диполь. Подобное явление может наблюдаться и для полярных частиц. Тогда индукционный эффект накладывается на диполь-дипольное взаимодействие, в результате чего увеличивается взаимное притяжение. Индукционное взаимодействие возрастает с ростом электрического момента диполя и поляризуемости, быстро уменьшается пр>и увеличении расстояния. В то же время Е инд от температуры не зависит, так как наведение диполей происходит при любом пространственном расположении молекул.Более или менее ощутимое влияние индукционного взаимодействия наблюдается для частиц, обладающих сравнительно большой поляризуемостью. [c.99]

    Эти три составляющие силы притяжения по-разному влияют на полную энергию притяжения. Наименьшее значение имеет индукционное взаимодействие. Ориентационное и дисперсионное взаимодействия зависят от природы молекул чем полярнее молекула, тем больше ориентационное взаимодействие (табл. 12). [c.40]

    Энергия адсорбции неполярных молекул на поверхности ионных решеток. Если адсорбент построен не из атомов, а из ионов, то к рассмотренным дисперсионным силам притяжения добавляются индукционные силы притяжения диполя, индуцированного в молекуле адсорбата электростатическим полем, создаваемым ионами решетки адсорбента. Доля индукционных сил в величине потенциальной энергии адсорбции пропорциональна поляризуемости молекулы адсорбата 2 и квадрату напряженности электростатического поля над поверхностью адсорбента  [c.493]

    Физическая адсорбция обусловливается тремя составляющими межмолекулярного притяжения—дисперсионным взаимодействием, ориентационным взаимодействием и индукционным взаимодействием ( 27). [c.372]

    Если адсорбент состоит не из атомов, а из ионов, то к действию дисперсионных сил добавляется действие индукционных сил притяжения диполя, индуцированного в молекуле адсорбтива электрическим полем, создаваемым ионами решетки адсорбента. При этом доля индукционных сил в адсорбционном взаимодействии пропорциональна поляризуемости молекулы адсорбтива и квадрату напряженности электростатического поля над поверхностью адсорбента. [c.87]

    Силы взаимодействия между полярными и неполярными молекулами (индукционный эффект). В этом случае притяжение возникает в результате поляризации неполярных молекул под действием силового поля полярных молекул. Поляризация неполярных молекул происходит за счет смеш,ения внешней электронной оболочки (электронного облака) относительно атомного ядра. В масляном сырье больше всего поляризации подвержены углеводороды, в молекулах которых имеются двойные связи, т. е. ароматические и непредельные. Поляризация не. зависит от молекулярного движения и, следовательно, не зависит от температуры, [c.70]


    Взаимодействие индуцированных диполей приводит к взаимному притяжению молекул подобно действию постоянных диполей, но более слабому. Такое взаимодействие называется поляризационным или индукционным. Энергия индукционного взаимодействия возрастает с увеличением наведенного диполя, быстро падает с ростом расстояния между взаимодействующими молекулами, но от температуры не зависит, так как наведение диполей происходит при любом пространственном положении молекул. Дебай для энергии индукционного взаимодействия одинаковых молекул вывел уравнение [c.76]

    Электростатическое взаимодействие молекул. Это взаимодействие молекул подразделяют на ориентационное, индукционное и дисперсионное. Наиболее универсально (т. е. проявляется в любых случаях) дисперсионное, так как оно обусловлено взаимодействием молекул друг с другом за счет их мгновенных микродиполей. При сближении молекул ориентация микродиполей перестает быть независимой и их появление и исчезновение в разных молекулах происходит в такт друг другу. Синхронное появление и исчезновение микродиполей разных молекул сопровождается их притяжением. При отсутствии синхронности в появлении и исчезновении микродиполей происходит отталкивание. [c.90]

    Притяжение молекул с постоянным дипольным моментом уменьшается с ростом температуры, поскольку тепловые возмущения вызывают отклонения от идеальной конфигурации — расположения молекулярных диполей вдоль прямой. Температурная зависимость индукционного притяжения выражена очень слабо. При взаимодействии отдельных молекул первое слагаемое в выражении (/) может составлять от О (для неполярных молекул) до —50% и более (для молекул с большим диполь-иым моментом) второе слагаемое обычно не превышает 5— 10%, тогда как на долю третьего, отражающего наиболее универсальное дисперсионное взаимодействие, приходится во многих случаях более половины всей энергии притяжения, вплоть до 100% для неполярных углеводородов. [c.17]

    Обычно энергии индукционного и ориентационного взаимодействия гораздо меньше энергии дисперсионного взаимодействия, и поэтому часто принимают, что энергия межмолекулярного притяжения определяется энергией дисперсионного притяжения. [c.87]

    При адсорбции полярных молекул на неполярном адсорбенте постоянный дипольный момент молекулы адсорбата поляризует атомы адсорбента, т. е. индуцирует в них электрические моменты. В результате возникает индукционное притяжение, накладываемое на дисперсионное. [c.106]

    Константа С для многоэлектронных атомов может быть выражена через электрические и магнитные свойства взаимодействующих молекул с помощью различных уравнений, основанных на квантовомеханических представлениях, которые здесь не будут рассматриваться. Существенно, что, как это показывается в физической химии, не только энергия дисперсионных, но и индукционных, и ориентационных сил притяжения зависят от расстояния г одинаковым образом, а именно — обратно пропорционально ще-стой степени расстояния. [c.86]

    Если на неполярном адсорбенте адсорбируются полярные молекулы адсорбтива, то постоянные диполи молекул адсорбтива поляризуют атомы адсорбента, т. е. индуцируют в них электрические моменты. Вследствие этого возникает индукционное притяжение, которое добавляется к дисперсионному. Индукционное взаимодействие обычно невелико и в зависимости от диполя молекулы адсорбтива и поляризуемости адсорбента может достигать не более нескольких ккал/моль. [c.87]

    Индукционная составляющая возникает при взаимодействии полярной и неполярной молекул, например, НС1 и С1з. При этом полярная молекула поляризует неполярную, в которой появляется (индуцируется) наведенный дипольный момент. В результате возникает диполь-дипольное притяжение молекул. Энергия индукционного взаимодействия тем больше, чем больше дипольный момент полярной молекулы и чем больше поляризуемость неполярной. Поляризуемость молекул — это мера смещения зарядов в молекуле в электрическом поле заданной напряженности. Поляризуемость резко увеличивается с увеличением размеров электронной оболочки. Например, в ряду молекул НС1, НВг и HI дипольный момент уменьшается, однако температуры плавления и кипения веществ увеличиваются, что связано с увеличением поляризуемости молекул. [c.153]

    В случае адсорбции цеолитом полярных неорганических молекул О2, N2, СО, СО2 и ЫНз, состоящих из нескольких атомов и имеющих электрический дипольный и (или) квадрупольный моменты, расчет вкладов энергии дисперсионного и индукционного притяжения и энергии отталкивания в общую потенциальную энергию Ф также можно провести в атом-ионном приближении. Однако кроме этого здесь надо учесть вклады в энергию межмолекулярного взаимодействия электростатического ориентационного взаимодействия электрических моментов молекулы с ионами решетки цеолита. Таким образом, в этом приближении потенциальная энергия Ф равна  [c.216]

    Из приведенных выше формул для ориентационной, индукционной и дисперсионной составляющих универсальной энергии притяжения молекул видно, что все эти виды энергии могут быть представлены в виде [c.154]


    Вклад ориентационного, индукционного и дисперсионного эффектов в энергию межмолекулярного притяжения зависит от природы молекул. Например, для молекул СО и НгО соотношения таковы  [c.113]

    Этими двумя слагаемыми межмолекулярное притяжение не исчерпывается. Ориентационные и индукционные взаимодействия составляют лишь часть ван-дер-ваальсовского притяжения, причем для многих соединений —меньшую часть его. Для таких же веществ, как Ые и Аг, оба слагаемых равны нулю (частицы этих веществ неполярны, и их электронные оболочки являются весьма жесткими) тем не менее благородные газы сжижаются. Это свидетельствует о существовании еще одной составляющей межмолекулярных сил. Какова ее природа  [c.241]

    Наконец, в группу О выделяются молекулы, в функциональных группах которых электронная плотность сконцентрирована на одном из центров и понижена на другом. К ним относятся вода, спирты, первичные и вторичные амины. Межмолекулярное взаимодействие молекул группы О с молекулами группы А остается неспецифическим (в основном это дисперсионное и отчасти индукционное притяжение). Межмолекулярное же взаимодействие молекул группы В с молекулами групп В и С, а также друг с другом включает обычно значительный вклад специфического взаимодействия. Кроме диполь-дипольного, диполь-квадрупольного и других электростатических ориентационных взаимодействий сюда относятся также еще более специфические направленные межмолекулярные взаимодействия, такие как водородная связь и другие [c.12]

    Существующие между молекулами и атомами слабые силы притяжения (индукционные и дисперсиопные) имеют электромагнитную природу и называются ван-дер-ваальсовскими. При взаимодействии макроскопических тел через вакуум или какую-либо среду, а также в тонких пленках происходит суммирование индивидуальных сил по определенному закону, вследствие чего радиус действия ван-дер-ваальсовских сил значительно возрастает (приблизительно на 2—3 порядка). В результате энергия молекулярного взаимодействия в пленках обнаруживается уже при толщинах порядка 1000 А. В углеводородных пленках в водной среде энергия ван-дер-ваальсовского взаимодействия приводит к возникновению отрицательного расклинивающего давления и понижению натяжения. [c.43]

    На дисперсионное взаимодействие приходится главная часть ( ил притяжения многих полярных молекул. Так, вычисленная энергия 1югезии метилэтилкетона при 40 °С состоит на 8 % из энергии ориентационного, на 14 % — индукционного и на 78 % — дисперсионного взаимодействия. Следовательно, на растворение любых компонентов нефтяного сырья в растворителях любой природы [реобладающее влияние оказывает дисперсионное взаимодействие. [c.216]

    Взаимодействие между молекулами в чистых жидкостях является в основном ван-дер-ваальсовым взаимодействием. Под этим названием объединяются несколько типов межмолекулярного притяжения, являющихся частными случаями электростатического взаимодействия. К ним относятся ориентационное притяжение между молекулами с постоянным диполем, индукционное притяжение между молекулами с постоянным диполем и молекулами с наведенным диполем и дисперсионное притяжение между взаимо-иаведенными диполями молекул, момент которых колеблется около нуля. [c.163]

    При адсорбции неполярных веществ на полярном адсорбенте (ионный кристалл) к дисперсионным силам притяжения добавляются индукционные силы притяясения диполя, индуцированного в молекуле адсорбата электростатическим полем адсорбента. Индукционное притяжение возникает и при адсорбции полярных молекул на неполярном адсорбенте. [c.212]

    Энергия адсорбции полярных молекул на неполярном адсорбенте. При адсорбции полярных молекул на неполярном адсорбенте постоянный дипольный момент молекулы адсорбата поляризует атомы адсорбента, т. е. индуцирует в них электрические моменты. В результате возникаетиндук- ///ип/// ционное притяжение, которое добавляется к дисперсионному. В зависимости от положения и величины диполя в молекуле адсорбата и поляризуемости адсорбента энергия индукционного взаимодействия может достигать нескольких ккал/моль. [c.494]

    Молекулы большинства веществ могут сравнительно легко поляризоваться под действием соседних молекул или ионов, в особенности в моменты сближения с ними. Взаимодействие возникающих при этом индуцированных диполей приводит к взаимному притяжению. молекул, подобно взаимодействию постоярп4ых диполей, но более слабому. Такое взаимодействие называется индукционным. Энергия индукционного взаимодействия, согласно работам Дебая (1920), не зависит от температуры и определяется дипольным моментом молекул -I и их поляризуемостью а  [c.87]

    При физической адсорбции силы, возникающие между молекулами адсорбента и адсорбата, имеют электрическую природу, зависят от расстояния г между молекулами и складываются из трех составляющих ориентационного /ор, индукционного 1/инд, дисперсионного /дисп, а также сил отталкивания между заполненными электронными оболочками атомов молекул. Все три составляющие сил притяжения в первом приближении пропорциональны Полный потенциал ван-дер-ваальсовых сил [c.39]

    Потенциал (12—6—4). Потенциал (12—6—4) был предложен Мейсоном и Шампом [125] в качестве модели для взаимодействия иона с нейтральным атомом. Аналогично потенциалу Леннарда-Джонса (12 — 6) этот потенциал содержит член характеризующий короткодействующие силы отталкивания. Дальнодействующая часть потенциала состоит из двух членов. Первый член, пропорциональный учитывает силы притяжения, возникающие между зарядом иона и диполем, который этот заряд индуцирует в нейтральном атоме. Второй член, пропорциональный представляет сумму лондоновской энергии и энергии квадруполя, индуцированного зарядом. Иначе говоря, потенциал (12—6—4) эквивалентен потенциалу (12—6) с дополнительным индукционным членом r- . Этот потенциал может быть полезен при расчете второго вириального коэффициента fii2 для случая слабо ионизированного газа. В приведенной форме потенциал может быть записан следующим образом  [c.223]

    С < . дывая энергии ориентационного, индукционного и диспер-скоиио о взаимодействия [см. уравнения (I, 184) — (1, 186)], получим энергию межмолекулярного притяжения между одинаковыми молекулами  [c.78]

    Последний член уравнения 1)—— характеризует ван-дер-ваальсовскос притяжение молекул, являющееся результатом действия ориентационных, индукционных и дисперсионных сил. Константа межмолекулярного притяжения Кб в общем случае включает три составляющие, описывающие соответственно взаимодействие двух постоянных диполей (ориентационное взаимодействие), диполя с неполярной молекулой (индукционное взаимодействие) и взаимодействие двух неполярных молекул [c.17]

    Водородная связь образуется путем электростатического и донорно-акцепторно-го взаимодействия. Энергия водородной связи включает три составляющие электростатическую энергию притяжения, преобладающую на больших расстояниях, энергию поляризации (ориентационное и индукционное взаимодействие) и переноса заряда, проявляющуюся при уменьшении расстояния и способствующую притяжению молекул, и энергию отталкивания. Силы притяжения и отталкивания в водородном мостике сбалансированы. В зависимости от энергии связи водородные связи подразделяют на сильные (120-250 кДжмоль ) и слабые (8-28 кДжмоль ). Появление водородной связи понижает суммарную энергию системы. [c.96]

    Во второй области ( 0,212 < R < 0,795 нм ) с ван-дер-ваальсовым минимумом, положение которого определяется балансом сил отталкивания и притяжения, энергия ММВ определяется энергиями взаимодействий электростатических Eel, обменных Еех, обменно-поляризационных - индукционной Еех. ind и дисперсионной Егх. isp и переноса заряда Есы  [c.62]

    К силам притяжения, действующим между молекулами, относятся силы Ван-дер-Ваальса, имеющие общую элект ромаг-нитную природу. Ван-дер-ваальс01вы взаимодействия принято считать да льнодействующим и, слабыми, объемными, коллективными и универсальными. В общем случае ван-дер-вааль-сово взаимодействие складывается из трех эффектов ориентационного (или диполь-дипольного), индукционного (диполь-наведенный диполь) и дисперсионного ( лондоновское взаимодействие)  [c.9]

    Складывая энергии ориентационного, индукционного и дисперсионного взаилюдействий и объединяя все постоянные, в соответствии с уравнениями (1У.5), (1 /. 6) и (1У.7) получаем -энергию межмолекулярного притяжения [c.242]

    Простейшим случаем межмолекулярных взаимодействий является универсальное неспецифическое дисперсионное притяжение, вызываемое флуктуациями электронной плотности во взаимодействующих системах. Поэтому дисперсионное взаимодействие увеличивается с ростом поляризуемости партнеров. Если в молекуле компонента или (и) в адсорбенте имеются ионы, жесткие диполи, квадруполи и т. д., неспецифическое взаимодействие может также включать комбинацию дисперсионного и электростатического индукционного или поляризационного притяжения. Дисперсионное притяжение имеет место в любом варианте хроматографии. Однако, его относительный вклад в общее взаимодействие может быть больше или меньше в зависимости от электростатического индукционного взаимодействия и вкладов других видов взаимодействия. В газовой и молекулярной жидкостной хроматографии в зависимости от сложности разделяемой смеси, а также подбора адсорбента и элюента можно использовать различные комбинации видов неспецифйческого и специфического взаимодействия, которые подробнее рассматриваются ниже. (Во всех случаях наряду [c.10]

    Выбор повторяющихся объемов в полостях цеолитов и силовых центров в их решетке. Потенциалы межмолекулярного взаимодействия с цеолитом в атом-ионном приближении с учетом индукционного электростатического притяжения и зависимость потенциала от положения молекулы в полости. Полузмпирический расчет константы Генри для адсорбции цеолитами благородных газов, алканов и ненапряженных цикланов. Расчет константы Генри для адсорбции цеолитом полярных молекул в атом-ионном приближении и в приближении точечных диполей и квадруполей. Расчеты для неорганических полярных молекул, этилена и бензола. Хроматоскопическая оценка квадрупольного момента циклопропана. Расчеты для адсорбции си-лнкалитом и возможности расчета для аморфных кремнеземов. [c.205]

    Рассмотрим возможность молекулярно-статистического расчета термодинамических характеристик адсорбции в атом-ионном приближении для потенциальной функции межмолекулярного взаимодействия молекула — ионный адсорбент. Заряды на образующих молекулы атомах, как и истинные заряды ионов адсорбента, часто неизвестны с нужной для расчета константы Генри точностью. Поэтому следует найти атом-ионные потенциалы межмолекулярного взаимодействия и уточнить их параметры, используя экспериментальные значения константы Генри для адсорбции опорных молекул данного класса адсорбатов. Далее, как и в рассмотренном в лекции 9 случае адсорбции на ГТС, надо проверить возможность переноса полученных атом-ионных потенциалов на другие молекулы данного класса. Использование атом-ионного приближения при адсорбции на ионных адсорбентах неполярных молекул требует учета дополнительного вклада в атом-ион-ный потенциал, вносимого поляризацией неполярной молекулы электростатическим полем ионного адсорбента (индукционное притяжение, см. табл. 1.1). Кроме того, при адсорбции ионными адсорбентами полярных молекул в рамках классического электростати- ческого притяжения надо учесть взаимодействие жестких электри- ческих дипольных и квадрупольных моментов молекулы с электростатическим полем ионного адсорбента (ориентационное притяжение, см. табл. 1.1). Затруднения, связанные с локализацией этих моментов в молекуле, значительно усложняют расчеты константы Генри для адсорбции полярных молекул на ионном адсорбенте. [c.205]

    ПОЛЯ молекулы с катионами Na+ дает вклад притяжения, а соответствующее взаимодействие с анионами рещетки цеолита дает вклад отталкивания, причем суммарный вклад притяжения преобладает. Это притяжение должно вызвать соответствующее увеличение общей энергии отталкивания. Однако его трудно учесть в рамках атом-ионного приближения, описывающего основной (для адсорбции большинства молекул) вклад в энергию отталкивания. В рассматриваемых ниже случаях, за исключением адсорбции цеолитом NaX сильно полярных молекул NH3, вклад ориентационного эффекта притяжения по своему значению не является определяющим. Поэтому соответствующим еще меньшим по значению изменением общей энергии отталкивания можно или пренебречь, или учесть его косвенно принять, что оно компенсирует поправку р для вкладов дисперсионного и электростатического индукционного притяжения в общую энергию межмолекулярного взаимодействия молекулы адсорбата с цеолитом. Поправка р, как было показано для случая адсорбции полярных молекул [см. уравнение (11.9)], уменьшает преобладающие в атом-ионном потенциале ф1...1 вклады притяжения, что формально эквивалентно соответствующему увеличению отталкивания. Поэтому в дальнейшем при расчете Ф для адсорбции полярных молекул цеолитом в ФА...япоправка р не вводится. [c.218]


Смотреть страницы где упоминается термин Притяжение индукционное: [c.438]    [c.158]    [c.86]    [c.138]    [c.164]    [c.152]    [c.113]    [c.210]   
Неорганическая химия (1987) -- [ c.178 ]




ПОИСК







© 2025 chem21.info Реклама на сайте