Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь ионизация

Рис. 47. Связь между константой ионизации титруемой кислоты и величиной скачка на кривой титрования. Рис. 47. <a href="/info/1538062">Связь между константой</a> ионизации титруемой кислоты и величиной скачка на кривой титрования.

    Энергия ионизации атома водорода (13,6 эВ, 1312 кДж/моль) столь велика, что соединения водорода (I) даже с такими сильными окислителями, как фтор и кислород, не могут быть ионными. Если же допустить образование в соединениях ионов их исключительно высокое поляризующее действие все равно привело бы к образованию ковалентной связи. По этим же причинам ионы Н+ не могут существовать в свободном состоянии при обычных химических явлениях. Специфика строения атома водорода обусловливает особый, присущий только соединениям водорода (I) вид химической связи — водородную связь. [c.272]

    Молекула сульфида водорода H2S имеет угловую форму ( HSH = = 92°, (isH = 0,133 нм), поэтому она полярна (ц = 0,34 Кл м). Способность образовывать водородные связи у HjS выражена слабее, чем у НзО. Поэтому сероводород в обычных условиях — газ (т. пл.— 85,6°С, т. кип. — 60,75°С). Собственная ионизация H2S в жидком состоянии [c.325]

    Аммиак очень хорошо растворяется в воде (при 20°С в одном объеме НгО растворяется около 700 объемов H3N). Хорошая растворимость объясняется образованием водородной связи между молекулами H3N и Н2О. Поскольку молекула H3N — лучший акцептор протона, чем НгО (с. 134), то в растворе имеет место ионизация  [c.349]

    Обменный процесс. Любой процесс, при котором ядра обмениваются магнитным окружением. Наиболее обычный обменный процесс — вращение вокруг связи. Ионизация — рекомбинация также является обменным процессом. При ионизации — рекомбинации место ушедшего ядра в результате обмена (межмолекулярного или внутримолекулярного) может занять ядро с любым спином (+1/2 или —1/2), а это обычно ведет к исчезновению спин-спинового взаимодействия. (Сейчас самое время попытаться решить задачу 24(6), если вы еще не сделали этого. Обратите также внимание на стр. 425 т. 1.) [c.578]

    Повышение т-ры, а также др. внеш. воздействия (облучение светом или сильное электрич., поле) могут вызвать разрыв ковалентной связи, ионизацию атомного остова и образование своб. электрона. Этот электрон в условиях непрерывного обмена валентными электронами между атомами кристалла может переходить из ячейки в ячейку и переносить с собой отрицат. заряд, к-рый повсюду является избыточным, т. е. своб. электрон становится электроном приводимости. Недостаток электрона у разорванной ковалентной связи становится блуждающей по кристаллу дыркой, с к-рой связан единичный положит, заряд. [c.56]


    Способность к сверхсопряжению приписывается прежде всего С—Н-связям, поскольку в основе расчета лежит допущение, что с протонами из-за их малой величины можно оперировать так же, как с электронами. Кроме того, было постулировано и сверхсопряжение второго рода ( изовалентное сверхсопряжение ), которое должно существовать между С—С-связями (ионизация с образованием СФ). Уже при сверхсопряжении первого рода разности энергий столь малы, что толкование Малликена кажется сомнительным сверхсопряжение второго рода представляется вовсе гипотетическим. [c.83]

    Если разрыв ковалентных связей, как правило, приводит к появлению свободных радикалов, хотя и здесь изредка возможны разрывы связей с перераспределением электрических зарядов (ионизация) [430], то в веществах с ионным типом межатомных связей ионизация при разрывах является неизбежной. [c.186]

    В ОДИОЙ и той же системе наблюдать раздольно обе стадии — частичную и полную ионизацию — удалось А. Н. Теренину [5] в растворе, содержащем слабое основание — акридин и слабую кислоту — янтарную. Акридин связан с янтарной кислотой междумолекулярной водородной связью, ионизация практически ие имеет места. Но при освещении системы равновесие смешается, и в той же системе появляется заметное количество ионов — частичная ионизация под действием квантов света сменяется полной. [c.108]

    Реакция медленного окисления фосфора кислородом воздуха интересна с различных сторон. Прежде всего, она сопровождается свечением, которое хорошо видно в темноте. Параллельно с окислением фосфора всегда происходит образование озона. Обусловлено это, по-видимому, промежуточным возникновением радикала фос-форила (РО) по схеме Р + О2 = РО + О и последующей побочной реакцией О + О2 = О3. Наконец, с окислением фосфора связана ионизация окружающего воздуха, что резко сказывается на его электропроводности. Этот эффект наблюдается и [c.445]

    Появление анодной поляризации можно связать с замедленностью одной из стадий транспортировки, разрушения твердой фазы или ионизации, являющихся обращением соответствующих стадий катодного процесса. При катодном выделении металлов замедленность транспортировки, т. е. недостаточная начальная скорость доставки разряжающихся ионов к электроду, смещает его потенциал в отрицательную сторону. При анодном растворении металла замедленность стадии отвода приводит к накоплению перешедших в раствор ионов вблизи электрода и, соответственно, смещает его потенциал в положительную сторону. [c.476]

    Природу химической связи и характерные особенности металлов можно объяснить на примере лития следующим образом. В кристалле лития орбитали соседних атомов перекрываются. Каждый атом предоставляет на связь четыре валентные орбитали и всего лишь один валентный электрон. Значит, в кристалле металла число электронов значительно меньше числа орбиталей. Поэтому электроны могут переходить из одной орбитали в другую. Тем самым электроны принимают участие в образовании связи между всеми атомами кристалла металла. К тому же атомы металлов характеризуются невысокой энергией ионизации — валентные электроны слабо удерживаются в атоме, т. е. легко перемещаются по всему кристаллу. Возможность перемещения электронов по кристаллу определяет также электрическую проводимость металла. [c.89]

    Возможность и степень распада на ионы определяется природой растворенного вещества и природой растворителя. Распад на ионы (вязан либо с явлением диссоциации (разъединения), либо с явле-пием ионизации (образования ионов). Так, пр,и растворении ионных соединений (поскольку они уже состоят из Ионов) имеет место диссоциация. Роль растворителя в этом случае заключается в создании условий для разъединения ионов противоположного знака и в препятствовании процессу молизации. Диссоциация ионных соединений протекает тем легче, чем полярнее молекулы растворителя. При распаде ковалентных соединений на ионы происходит гетеролитиче-ский разрыв связи, т. е. ионизация. [c.128]

    Очевидно, что в однотипных молекулах гипервалент-ная связь будет прочнее, если центральный атом (донор) имеет меньший потенциал ионизации Отсюда ясно, почему, например, для серы известен тетрафторид 8р4 и даже гексафторид 5Рв, тогдя как для кислорода подобные соединения не известны. Энергия ионизации атома кислорода столь велика (13,6 эВ), что даже фтор оказывается неэффективным как ли- [c.270]

    Исключение из этого правила составляют системы, содержащие ионы, так как процессы ионизации обычно связаны с сильными изменениями энтропии растворителя. Соответствующие примеры приведены в табл. ХУ.2 для [c.435]

    Каждое вещество в данном растворителе и при данных условиях характеризуется определенной степенью ионизации. Степенью ионизации вещества в растворе называется отношение числа молей ионизированного вещества к оби ему числу молей растворенного. Степешз ионизации в основном определяется электронно-донорными и электронно-акцепторными свойствами растворенного вещества и растворителя. Для многих соединений наиболее сильно ионизирующими растворителями являются вода, жидкие аммиак и фторид водорода. Эти соединения состоят из дипольных молекул и склонны к донорно-акцепторному взаимодействию и образованию водородной связи. Например, НС1 хорошо ионизируется в воде, что связано с превращением водородной связи Н2О. .. H I в донорно-акцепторную [Н гО—Н]+  [c.128]


    Следовало бы ожидать, что уравнение (XVI.3.4) будет удовлетворяться, если процесс ионизации будет идти строго параллельно процессу образования активированного комплекса. Так как первый процесс сводится к переносу протона от НА к растворителю, в то время как последний представляет собой частичный перенос протона от НА к реагенту, совершенно неудивительно, что изменение свободной энергии в этих двух процессах может быть связано. Из того факта, что переходное состояние представляет собой только частичный перенос протона и, следовательно, обусловливает только часть общего изменения свободной энергии ионизации, можно заключить, что величина показателя а должна лежать в интервале от О до 1. Однако точного линейного соотношения следовало бы ожидать только в том случае, если бы не было специфических взаимодействий между субстратом и НА или по крайней мере таких взаимодействий, которые отличались бы от взаимодействия между растворителем и НА. На то, что такие взаимодействия все н е существуют, указывают наблюдаемые иногда отклонения от уравнения Бренстеда. [c.485]

    Здесь левая часть уравнения представляет разность свободных энергий активации для двух ароматических соединений, а правая часть — разность свободных энергий ионизации для тех же ароматических соединений — константа. Учитывая, что свободная энергия связана с соответствующей скоростью или константами ионизации (см. разд. XVI.3) уравнением [c.525]

    В отличие от обсуждавшегося выше ж-аминофенола, величины рКа цвиттерионов часто отличаются от величин рКа простейших аналогов составных частей молекулы. Это явление наблюдается в тех случаях, когда кислотная и основная группы расположены близко друг от друга или разделены цепочкой конъюгированных двойных связей. Ионизация основной группы приводит к появлению положительного заряда, который притягивает электроны и поэтому усиливает соседнюю кислотную группу, соответственно уменьшая ее рКа. Ионизация же кислотной группы приводит к появлению отрицательного заряда, который, увеличивая электронную плотность основной группы, усиливает ее основность, соответственно повышая рКа основной ионизации. Следует, однако, отметить, что электронодонорное [c.108]

    С Другой стороны, противоположный эффект мог бы быть обусловлен стабилизацией карбоксильной (или сульфо-) группы в результате фиксирования ее посредством сильной водородной связи ионизация такой кислоты была бы затруднена. Этим частично объясняется аномально слабая ионизация орто-фтор-бензойной кислоты по сравнению с орто-хлор-, орто-бром- и орто-иодбензойными кислотами (табл. 4, Я). Тот факт, что орто-фтор-бензойная кислота сильнее бензойной кислоты, обусловлен злектроноакцепторными свойствами фтора однако меньшая константа ионизации этой кислоты по сравнению с ее аналогами должна быть в значительной степени связана с образованием сильной водородной связи F- -Н—О (LVI). Подобные ей связи у орто-хлорбензойной кислоты (если они вообще образуются) являются чрезвычайно слабыми. [c.235]

    Из формулы О — 5)/5 следует, что чем выше будет растворимость образующегося осадка и чем ниже концентрация осаждаемого веш ества, тем меньше будет относительное пересыщение, тем ченьшее число первичных кристаллов будет возникать и тем круптее они будут. Таким образом, для получения крупнокристаллических осадков необходимо в процессе осаждения повышать растворимость осадка и понижать концентрации осаждаемого и осаждающего ионов. Существует ряд способов понижения концентрации реагирующих ионов при формировании осадков. Самым простым из них является разбавление растворов перед осаждением и медленное (по каплям) при постоянном перемешивании прибавление раствора осадителя к исследуемому раствору (перемешивание нужно для того, чтобы в отдельных местах раствора не повышалась концентрация осадителя, т. е. не возникало так называемое местное пересыщение). Очень эффективным способом понижения концентрации осаждаемого иона является связывание его в комплексное соединение средней прочности. В этом случае достаточно низкая концентрация осаждаемого иона в растворе создается за счет частичной ионизации комплексного соединения. При добавлении иона-осадителя из-за образования малорастворимого соединения равновесие ионизации комплекса будет сдвигаться, но концентрация осаждаемого иона все время будет оставаться низкой. Например, если связать Со2+ в комплексное [c.101]

    Гегеролитический разрыв отличается от разрушения связи при распаде молекулы на атомы и радикалы. В последнем случае разрушается связывающая электронная пара и процесс называется гомо-литическим. В соответствии со сказанным следует различать процесс диссоциации и процесс ионизации, в случае НС1 первый наблюдается при его термическом распаде на атомы, второй — при распаде на ионы в растворе. [c.81]

    Природу ионной связи, структуру и свойства ионных соединений можно объяснить с позиций электростатического взаимодействия ионов. Способность элементов образовывать простые ионы обусловлена электронной структурой их атомов. Эту способность можно оценить величиной энергии ионизации и сродства атомов к электрону. Понятно, что легче всего образуют катионы элементы с малой энергией ИОНИЗЯИ.ИИ -Ц- тттрлпцнпчрмрлкныо металлы. Об- [c.86]

    В результате ионизации молекул Н аО возникают гидратированные ионы ОН и ОНз. При столкновении их снова образуются молекулы поды, т. е. процесс ионизации обратим. Процессы ионизации и молизации протекают непрерывно. Вследствие прочности связи О—Н степень ионизации воды в общем незначительна. [c.121]

    Сила кислородсодержащих кислот зависит от строения молекулы. Формулу кислородсодержащих кислот в общем виде можно записать Ю,- (ОН) , имея в виду, что в их молекулах имеются связи Н—О—Э и Э= 0. Как показывают исследования, сила кислот практически не швисит от п (числа ОН-групп), но заметно возрастает с увеличением т (числа несвязанных в ОН-группы атомов кислорода, т. е. со связями Э=0). По первой ступени ионизации кислоты типа Э(0Н)г1 0Т1ЮСЯТСЯ к очень слабым (/< 1= — 10" , = [c.184]

    Собственная ионизация жидкого HF незначительна К =2,07х Х10" ).0на происходит путем перехода протона (илисоответственно иона фтора) от одной молекулы к другой, сопровождающегося превращением водородной связи из межмолекулярной в межатомную и в ковалентную, При этом образуются сольватированные фтороний-яок Щ и фторогидрогенат-тн HF по схеме [c.284]

    Гидразин — бесцветная жидкость (т. пл. 2°С, т. кип. 113,5°С), молекульг которой соединены водородной связью. Собственная ионизация жидкого гидразина [c.351]

    В противоположность 1ЮННЫМ ковалентные тетрагидридобораты типа А1(ВН4)з (т. пл. —64,5°С, т. кип. 44,5°С), Ве(ВН4)2 (т. возг. 91"С) летучи, легкоплавки. В этих гидридоборатах (поскольку имеется дефицит электронов) связь между внешней и внутренней сферами осуществляется за счет трехцентровых связей. Таким образом, эти соединения являются смешанными гидридами. В гидридоборатах же щелочных и щелочноземельных металлов (низкие энергии ионизации) дефицит электронов устраняется за счет перехода электронов атома 11еталла к радикалу ВН4, т. е. в этом случае связь между внешней и знутренней сферами становится преимущественно ионной  [c.444]

    Валентный слой атома аргона, как и неона, содержит восемь электронов. Вследствие большой устойчивости электронной структуры атома (энергия ионизации 15,76 эВ) соединения валентного типа для аргона не получены. Имея относительно больший размер атома (молекулы), аргон более склонен к образованию межмолекулярпых связей, чем гелий и неон. Поэтому аргон в виде простого вещества характеризуется несколько более высокими температурами плавления (—189,3"С) и кипения (—185,9°С). Он лучше адсорбируется. [c.496]

    В принципе нет оснований для того, чтобы применять такой метод к молекулам с ковалентной связью. Очевидно, что для таких частиц работа ионизации должна включать особый компонент, который соответствует работе образования ионной пары из ковалентной молекулы. Однако можно ожидать, что этот компонент будет подобен по форме кулоновскому, так что различие может заключаться попросту в коэффициенте пропорциональности. Более серьезное возражение, которое было выдвинуто Питцером, относится к пренебрежению в таких уравнениях, как уравнение (XV.12.1), компонентом, включающим энергию отталкивания, благодаря которой поддерживается равновесная концентрация ионных пар. Если эти силы значительно изменяются с изменением расстояния, например пропорционально можно показать, что энергия отталкивания составляет 1/(2 часть кулонов-ской энергии. Такое же значение имеет энергия взаимной поляризации и ван-дер-ваальсовых сил притяжения. [c.460]

    В этом случае структура стерически препятствует образованию пятивалентного атома С, т. е. реакции инверсии. Однако замещение СГ не идет и но механизму 8]yi, что указывает на чрезвычайно малую скорость ионизации связи С — С1 в этом случае.  [c.474]

    Рассмотрение общего кислотно-основного катализа как реакции передачи водорода , вызванной кислотами и основаниями, включает, естественно, вопрос о связи каталитической сплы кислот с их константой ионизации. Еще раньше было устаповлено, что между этими двумя константами существует определенная связь. Тейлор [33] предложил первое количественное соотношение, в котором кислотпо-каталитическая константа кислоты /iha была пропорциональна K , т. е. корню квадратному из константы ионизации. Предложенное позднее [34] уравнение Бренстеда для общего кислотно-основного катализа широко используется как эмпирическое соотношение  [c.484]

    Термодинамика дает следующее соотношение —RT In ЛГна = А °на. т. е. равно стандартному изменению свободной энергии в результате ионизации НА. Если уравнение (XVI.3.2) верно, то это означает, что между Ai H A и Ai HA существует линейная связь  [c.485]

    Затем образуется следующая связь. На основе этого и других кинетических и стериохимических данных Робертс и Кимбалл [80] предположили, что первая стадия реакции заключается в образовании комплекса между олефином и Вгз, медленная ионизация которого лимитирует скорость реакции [c.500]

    В пламенах происходит также образование заряженных ча стиц — ионов, ион-радикалов. Присутствие заряженных частиц в пламени было установлено еще в 1600 г., когда Гильберт показал, что пламя разряжает электроскоп. За последние 10— 15 лет внимание к исследованию ионизации в пламенах возро ело главным образом в связи с разработкой магнито-гидроди намического способа превращения химической энергии топлива в электрическую. [c.115]


Смотреть страницы где упоминается термин Связь ионизация: [c.441]    [c.158]    [c.158]    [c.49]    [c.441]    [c.296]    [c.372]    [c.35]    [c.87]    [c.145]    [c.340]    [c.500]    [c.460]    [c.476]   
Основы общей химии Т 1 (1965) -- [ c.174 ]

Основы общей химии том №1 (1965) -- [ c.174 ]




ПОИСК







© 2025 chem21.info Реклама на сайте