Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Валин лейцина, изолейцина и валин

    Основная масса больщинства аминокислот проходит в реакциях обмена через стадии превращений в глутаминовую или аспарагиновую кислоты или аланин. Содержание амидов и этих трех аминокислот в белках, особенно в белках растений, обычно не менее 30%, а в некоторых белках, например в глиадине пшеницы, превышает 50% общего количества аминокислот. Кроме того, в процессах обмена эти три аминокислоты могут синтезироваться из других аминокислот. Глутаминовая кислота образуется из пролина, орнитина и гистидина, аланин— из триптофана, цистина, серина и т. д. Количество этих аминокислот, объединяемых системой дикарбоновых аминокислот, также составляет не менее 30% аминокислот, входящих в состав белковых молекул. Таким образом, не менее 60% аминокислот, содержащихся в молекуле белка, составляют глутаминовая и аспарагиновая кислоты, их амиды, аланин и аминокислоты, связанные с ними прямыми переходами в обмене веществ. Кроме того, аминогруппы других аминокислот, например валина, лейцина, изолейцина, глицина, в результате переаминирования могут переходить на кетоглутаровую кислоту и образовывать глутаминовую кислоту. Следовательно, доля азота, подвергающаяся обмену через эту систему, еще более увеличивается. Эти данные также показывают центральную роль дикарбоновых аминокислот в обмене веществ. [c.257]


    По полярности боковой цепи Я различают полярные и неполярные аминокислоты. К неполярным аминокислотам относятся глицин и аланин, а также гидрофобные аминокислоты — валин, лейцин, изолейцин, пролин, метионин и фенилаланин. К полярным аминокислотам причисляют серин, треоиин, цистеин, аспарагин, глутамин и триптофан (нейтральные соединения), аспарагиновую и глутаминовую кислоты и тирозин (кислые гидрофильные аминокислоты), а также лизин, аргинин и гистидин (основные гидрофильные аминокислоты). Гидрофильные полярные соединения увеличивают растворимость пептидов и белков в водных системах, в то время как нейтрально-полярные аминокислоты ответственны за каталитическую активность ферментов. В противоположность неполярным гидрофобным аминокислотам полярные аминокислоты обычно находятся на поверхности молекулы белка. [c.17]

    Глицин Аланин Фенилаланин Лейцин Изолейцин Валин Метионин Цистеин Серин Аспарагиновая кислота [c.343]

    РИС. 14-10. Биосинтез лейцина, изолейцина, валина и кофермента А. [c.113]

    Как указывалось ранее, незаменимые аминокислоты не синтезируются в организме человека и животных, их необходимо включать в состав пищи для обеспечения оптимального роста и для поддержания азотистого баланса. Для человека являются незаменимыми следующие аминокислоты лейцин, изолейцин, валин, лизин, метионин, фенилаланин, триптофан, треонин, гистидин и аргинин. Восемь из перечисленных аминокислот оказались незаменимыми для многих изученных видов высших животных. Что же касается гистидина и аргинина, то эти аминокислоты могут синтезироваться в организме, но в количестве, не обеспечивающем оптимального роста и развития. Иначе обстоит дело со всеми остальными незаменимыми аминокислотами, так как организм совершенно утратил в ходе эволюции способность синтезировать их углеродные цепи, т. е. незаменимым у незаменимых аминокислот является их углеродный скелет. Высшие растения и большинство микроорганизмов способны к активному синтезу этих аминокислот. Пути их биосинтеза у различных видов организмов идентичны или близки и гораздо сложнее, чем пути образования заменимых аминокислот. Во многих из этих реакций участвуют такие посредники, как тетрагидрофолиевая кислота (ТГФ), переносчик одноуглеродных фрагментов (—СН3, — Hj, —СНО, — HNH, —СН=) и 5-адено-зилметионин — главный донор метильных групп в реакциях трансметилирования. [c.402]

    Итак, суммарная схема биосинтеза этих трех аминокислот - валина, лейцина, изолейцина - представлена ниже. [c.127]


    Для жизнедеятельности организма человека н животных необходимы белки, жиры и углеводы, являющиеся пластическими и энергетическими материалами, а также минеральные соли н витамины. Среди жиров и продуктов гидролиза белков имеются незаменимые органические вещества, поступление которых должно обеспечиваться с пищей, так как они не синтезируются организмом. По-видимому, по мере эволюционного развития животного мира отдельные виды постепенно теряли способность к биосинтезу некоторых простых органических соединений, участвующих в метаболических процессах, так как более эффективным для организма путем они могли получить их из окружающей органической природы — растений и микроорганизмов или с животной пищей. К таким органическим соединениям относятся незаменимые -аминокислоты, незаменимые ненасыщенные жирные кислоты, а также витамины (термин витамины предложен Функом [2]). На необходимость для питания таких факторов ( витаминов ), не синтезируемых животными, указывал Лунин [3]. Для человека незаменимыми оказались восемь -аминокислот (из 20) валин, лейцин, изолейцин, лизин, треонин, метионин, фенилаланин триптофан [4]. Для животных незаменимых аминокислот значительно больше, например для крысы —11. [c.5]

    Пути биосинтеза конкретных аминокислот различаются деталями схемы и природой исходной окси- или оксокислоты. По этому последнему фактору аминокислоты подразделяются на аминокислоты, происходящие из пировиноградной кислоты — лейцин, изолейцин, валин, лизин, аланин аминокислоты, происходящие из щавелевоуксусной кислоты — аспарагиновая кислота, аспарагин, треонин, метионин аминокислоты, происходящие из 2-оксоглу-таровой кислоты —аргинин, пролин, глутаминовая кислота, глутамин аминокислоты, происходящие из продуктов [c.80]

    Аминокислоты, которые не синтезируются в результате биохимических превращений в организме (и поэтому организм получает их исключительно с пищей), называются незаменимыми аминокислотами. Для человека это валин, лейцин, изолейцин, лизин, метионин, треонин, фенилаланин и триптофан. [c.187]

    Heu — Arg — Leu — Phe — Lys — Ser —... и т. п. (всего 153 остатка). В русской транскрипции эта последовательность означает цепь, состоящую из аминокислотных остатков валшт — лейцин — серии — глутамин — глицин — глицин — триптофан — глутамин — лешдин — валин — лейцин — гистидин — валин — триптофан — аланин — лизин — валин — аланин — аспарагин — валин — аланин — глицин — гистидин — глицин — глутамин — аспарагин — изолешщн — лейцин — изолейцин — аргинин — лейцин — фенилаланин — лизин [c.721]

    Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтетические. Среди природных аминокислот (около 150) выделяют протеиногенные (20 аминокислот), которые входят в состав белков. Все протеиногенные аминокислоты представляют собой -формы. Из них восемь являются незаменимыми, они синтезируются только растениями и не синтезируются в организме человека, поэтому их получают с пищей. К ним относятся валин, лейцин, изолейцин, треонин, метионин, лизин, фенилаланин, триптофан, иногда в их число включают гистидин и аргинин, которые не синтезируются в организме ребенка. [c.10]

    В процессе пищеварения Б. подвергаются гидролизу до аминокислот, к-рые и всасываются в кровь. Пищ ценность Б. зависит от их аминокислотного состава, содержания в них т. наз. незаменимых аминокислот, не синтезирующихся в организмах (для человека незаменимы триптофан, лейцин, изолейцин, валин, треонин, лизин, метионин и фенилаланин). В питательном отношении растит. Б. менее ценны, [c.253]

    Для написания отдельных а-аминокислот (и их остатков) часто применяют сокращенные обозначения, представляющие собой первые три латинские буквы тривиального названия (см. табл. 3.3.1) [3.3.1]. Из природных аминокислот для нормального питания человека наиболее важны следующие восемь аминокислот (незаменимые аминокислоты, Розе, 1935 г.) фенилаланин, треонин, метионин, валин, лейцин, изолейцин, лизин и триптофан. [c.650]

    Источником энергии, очевидно, служит сопряженная реакция окисления-восстановления. Роль донора водорода могут выполнять, например, аланин, лейцин, изолейцин, валин, серин, метионин и т.д. Акцепторами водорода могут служить глицин, пролин, аргинин, триптофан и т.д. Аминокислота-донор дезаминируется в оксокислоту, которая затем в результате окислительного декарбоксилирования превращается в жирную кислоту. Этот этап сопряжен с фосфорилированием и, таким образом, представляет собой реакцию, доставляющую энергию. Водород, перенесенный при этом на ферредоксин, снова связывается при восстановительном дезаминировании аминокислоты-акцептора. Однако не все аминокислоты используются всеми пептолитическими клостридиями. [c.298]

    В тесной связи с вопросом о биологической ценности белка находится представление о так называемых жизненно необходимых, или незаменимых, аминокислотах. Значение определенных аминокислот для нормального роста было выяснено в опытах на людях и некоторых животных. В этих опытах потребность в белках удовлетворялась смесью чистых аминокислот, из которой исключались те или иные аминокислоты, и, в зависимости от того, тормозился при этом рост или совершался нормально, делали вывод о значении исследуемых аминокислот для роста. Так, было установлено, что жизненно необходимыми (незаменимыми) аминокислотами для роста крыс являются следующие 10 аминокислот валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, лизин, гистидин, аргинин (рис. 40 и 41). Незаменимость указанных аминокислот для роста, видимо, связана с тем, что организм неспособен их синтезировать. Они должны быть введены извне вместе с пищей. Скорость синтеза аргинина, который может быть синтезирован в организме, невелика. Поэтому при отсутствии аргинина в пище рост не прекращается, но идет медленнее, чем при наличии аргинина. Отсутствие в пище остальных аминокислот (например, гликокола, аспарагиновой кислоты) не влияет на рост, так как организм способен их синтезировать. [c.308]


    Гидрофобная связь (называемая также "гидрофобным взаимодействием ) представляет собой результат несвязного взаимодействия неполярных алкильных групп в боковых цепях таких аминокислот, как аланин, валин, лейцин, изолейцин, за [c.69]

    С-концевую аминокислоту, состоит главным образом из полярных аминокислот и экспонирован в цитоплазму клетки. Второй, содержащий большое количество неполярных аминокислот (лейцин, изолейцин, валин), пронизывает гидрофобную область мембраны. [c.219]

    Древесная зелень по химическому составу сходна с травой, но содержит меньше каротина В расчете на сухую массу в хвое содержится 6—12% протеина и нуклеиновых кислот, 70—80 % углеводов В состав протеина древесной зелени входят около 20 аминокислот, в том числе лизин, лейцин, изолейцин, валин и другие незаменимые аминокислоты Поэтому витаминная мука, получаемая путем измельчения и высушивания древесной зе лени, является эффективной белково витаминной добавкой к корму для скота и птицы По питательной ценности древесная зелень сходна с пшеничной и ржаной соломой Однако надо иметь в виду, что древесная зелень в отличие от травы содер жит алкалоиды, смолистые и дубильные вещества, поэтому [c.333]

    К-группы этого класса аминокислот представляют собой углеводороды, и, следовательно, они гидрофобны (рис. 5-6). К данному классу относятся пять аминокислот с алифатическими К-группами (аланин, валин, лейцин, изолейцин и пролин), две аминокислоты с ароматическими кольцами (фенилаланин и триптофан) и одна аминокислота, содержащая серу (метионин). Особого упоминания заслуживает пролин, так как его а-аминогруппа не свободна, а замещена частью К-группы, в результате чего молекула приобретает циклическую структуру (рис. 5-6). [c.115]

    Заболевание, связанное с нарушением метаболизма аминокислот с разветвленными боковыми цепочками (валин, лейцин, изолейцин). —Яриж. перев. [c.9]

    Лейцин + изолейцин Валин [c.182]

    Г ЛИЦИН Аланин Валин Лейцин Изолейцин Фенилаланин Пролин Серин Треонин Оксипролин Тирозин [c.287]

    Лейцин. ... Изолейцин. . Валин. ... Глютамин, к-та Аспарагин, к-та Гликоколь. Аланин. . . Про. н. . Оксипролин [c.367]

    В настояш ее время некоторыми авторами высказывается идея о том, что распределение полярных и неполярных аминокислот вдоль полипептидной цепи является одним из важных элементов кодирования пространственной структуры глобулярных белков. Еще Фишером [55] было показано, что соотношение суммарных объемов полярных и неполярных аминокислотных остатков может обусловливать форму белковой молекулы (сферическую или вытянутую), а также способность образовывать четвертичные структуры. Анализ, проведенный Перутцем, Кендрью и Уотсоном [66] на примере восемнадцати аминокислотных последовательностей в различных миоглобинах и гемоглобинах, показал, что из 150 остатков, входящих в эти молекулы, 33 находятся в местах, экранированных от контакта с водой, т. е. во внутреннем ядре белковой глобулы, причем 30 из 33 являются неполярными аминокислотами (глицин, аланин, валин, лейцин, изолейцин, фенилаланин, иро-лин, цистеин, метионин, тирозоин и триптофан). Это наводит [c.16]

    Имеется сообщение о разделении и определении с точностью 10% валина, лейцина, изолейцина, треонина, метионина, фенилаланина, гистидина и аргинина. [c.91]

    Перечислите исходные вещества, необходимые для синтеза в каждом случае, и приведите полную последовательность реакций для одного примера из каждой группы. Задача 37.11. При взаимодействии ацетальдегида со смесью K N и NH4 I (синтез Штрек-кера) образуется соединение aHgNj (какова его структура ), которое при гидролизе дает аланин. Покажите, как синтез Штреккера можно применить для синтеза глицина, лейцина, изолейцина, валина и серина (в качестве исходного вещества используйте С2Н5ОСН2СН2ОН). Все необходимые при этом карбонильные соединения необходимо получить из легко доступных веществ. [c.1045]

    Относительную чувствительность аминокислотных остатков в инсулине к "[-излучению исследовали Дрейк и его сотрудники [69]. Как указывалось ранее, интенсивное исследование инсулина особенно желательно, поскольку он является единственным белком, строение которого полностью известно. На основании результатов определений концевых групп, изучения спектров поглощения и хроматографии аминокислот на бумаге в образцах, подвергнутых облучению дозами до 40 мегафэр, были сделаны выводы 1) что цистин, тирозин, фенилаланин, пролин и гистидин обладают высокой радиочувствительностью 2) что лейцин, изолейцин, валин, лизин и аргинин заметно разрушаются при наиболее высоких дозах и 3) глицин и фенилаланин, Н-концевые аминокислоты (т. е. имеющие свободные а-аминогруппы) дезаминируются. [c.227]

    Б белках к числу наиболее гидрофобных аминокислотных остатков от1Юсятся остатки валина, лейцина, изолейцина, фенилаланина, нрол1И1а, мел ионина, триптофана и тирозина. Два последних, правда, содержат и гидрофильные фрагменты, соответственно V—II и 0 Н, однако большой объем гид офобной части придает им преимущественно гидрофобный характер. [c.75]

    К числу аминокислот несиптезируемых или слишко - медленно синтезируе.мых в организме высших животных относятся валин, лейцин, изолейцин, треонин, метионин, фен-кпаланин, триптофан аргинин, лизин и гистидин., Эти аминокислоты долл<ны входить в состав пищевых белков, ценность которых определяется именно наличием в них незаменимых аминокислот. [c.192]

    Каждая из 20 аминокислот, которые обьино обнаруживают как продукты гидролиза белков, содержит -карбоксильную группу, а-аминогруппу и специфическую для данной аминокислоты -группу, замещающую водород при а-атоме углерода. а-Атом углерода во всех аминокислотах (за исключением глицина) является асимметрическим, и, следовательно, каждая из этих аминокислот может существовать по меньшей мере в двух стереоизомерных формах. В белках встречаются только Ь-стереои-зомеры, соответствующие по своей конфигурации Ь-глицеральдегиду. Классификация аминокислот основана на различиях в полярности их К-групп. К классу неполярных аминокислот принадлежат аланин, лейцин, изолейцин, валин, пролин, фенилаланин, триптофан и метио-ний. В класс полярных нейтральных аминокислот входят глицин, серин, треонин, цистеин, тирозин, аспарагин и глутамин. Класс отрицательно заряженных (кислых) аминокислот включает аспарагиновую и глутаминовую кислоты, а класс положительно заряженных (ос-нбвных) аминокислот-аргинин, лизин и гистидин. [c.132]

    Основы метода. При обработке аминокислот белкового гидро-лизата нингидрином летучие альдегиды образуются из валина. лейцина, изолейцина, аланина, фанилаланина и метионина. Для определения иоследних трех аминокислот существуют отдельные метч>ды (см. гл. II, III и VII) следовательно, мо кно определить сумму аминокислот группы лейцина . [c.289]

    Кроме того, аминоазот других аминокислот, например, валина, лейцина, изолейцина, глицина и метионина, может путем переаминирования переходить на кетоглютаровую кислоту, давая глютаминовую кислоту. Таким образом, доля азота аминокислот, подвергающаяся обмену через указанную систему, еще более увеличивается. [c.354]

    Применение. Наибольший практич. интерес представляют алифатич. аминокарбоновые к-ты, являюищеся основой синтетич. и природных полиамидов (белков, полипептидов). а-А. используют для получения синтетич. полипептидов. L-a-A., и в особенности те, к-рые не синтезируются в организме человека и наз. незаменимыми А. (валин, лейцин, изолейцин, фенилаланин, треонин, метионин, лизин, триптофан), широко применяют в медицинской практике. (о-А. и их лактамы служат для промышленного синтеза полиамидов, Ароматич. А. используют в синтезе красителей и лекарственных препаратов. На основе аминокарбоновых и аминофосфоновых к-т синтезируют селективные комплексообразуюпще ионообменники. [c.52]


Смотреть страницы где упоминается термин Валин лейцина, изолейцина и валин: [c.98]    [c.236]    [c.236]    [c.11]    [c.648]    [c.134]    [c.149]    [c.235]    [c.8]    [c.79]    [c.320]    [c.65]    [c.280]    [c.363]    [c.363]    [c.209]    [c.216]    [c.280]   
Аминокислотный состав белков и пищевых продуктов (1949) -- [ c.283 ]




ПОИСК





Смотрите так же термины и статьи:

Арахин лейцина, изолейцина и валин

Белки тканей содержание лейцина, изолейцина и валина

Валин

Вирусы лейцина, изолейцина и валин

Волос содеожание лейцина, изолейцина и валин

Железы лейцина, изолейцина и валин

Земляной орех лейцина, изолейцина и валина

Злаки содержание лейцина, изолейцина и валин

Изолейцин

Изолейцин как антагонист лейцина и валин

Изолейцин, лейцин и валин

Казеин лейцина, изолейцина и валин

Кератины лейцина, изолейцина и валин

Копыта лейцина, изолейцина и валин

Корма лейцина, изолейцина и валин

Кролик лейцина, изолейцина и валина

Кукуруза содержание лейцина, изолейцина и валин

Лактальбумин лейцина, изолейцина и валин

Лактоглобулин лейцина, изолейцина и валин

Лейцин

Лейцин определение диференцированным изолейцина и валина при

Листья лейцина, изолейцина и валин

Лупин лейцина, изолейцина и валин

Льняное семя лейцина, изолейцина и валина в муке

Люцерна лейцина, изолейцина и валин

Микробиологическое определение лейцина, изолейцина и валин

Мышцы лейцина, изолейцина и валин

Нафталин сульфокислота в разделении лейцина от валина и изолейцина

Обмен валина, лейцина и изолейцина

Окисление при определении лейцина, изолейцина и валина

Определение лейцина, изолейцина и валина

Отруби желтой лейцина, изолейцина и валин

Плесень лейцина, изолейцина и валин

Пшеница содержание лейцина, изолейцина и валин

Ракообразные лейцина, изолейцина и валин

Рицин лейцина, изолейцина и валин

Содержание лейцина, изолейцина и валина в различных белках

Спонгин лейцина, изолейцина и валин

Фиброин шелка лейцина, изолейцина и валин

Хлеб, лейцина, изолейцина и валин

Хлопковое семя лейцина, изолейцина и валина

Хрусталик лейцина, изолейцина и валин

Эдестин лейцина, изолейцина и валин

Эластин лейцина, изолейцина и валин



© 2025 chem21.info Реклама на сайте