Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория идеальной

    В приведенном кратком качественном рассмотрении не учтены полярные и пространственные эффекты, которые в ряде случаев оказывают существенное влияние на энергии активации радикальных процессов. Теория, рассматривающая реакционную способность мономеров и радикалов только с учетом энергий сопряжения и не учитывающая полярных и пространственных эффектов, называется теорией идеальной радикальной реакционной способности. [c.10]


    Во-вторых, если имеется какое-либо свойство, измеряемое экспериментально, которое зависит от эффективного диаметра столкновения, можно воспользоваться экспериментальными значениями Оэфф. Одним из таких свойств (не единственным) является вязкость, или внутреннее трение газа (см. гл. П1, 3). Молекулярно-кинетическая теория идеального газа дает следующее соотношение между коэффициентом вязкости т), выраженным в г см сек, и квадратом эффективного диаметра столкновения, выраженного в см [c.122]

    В конце прошлого века Рауль, Вант-Гофф, Аррениус установили законы, связывающие концентрацию раствора нелетучего вещества с такими его свойствами, как осмос, понижение давления пара растворителя, понижение температуры замерзания и повышение температуры кипения. Эти свойства зависят только от количества частиц растворенного вещества, но не от его природы, они называются коллигативными свойствами. Растворы, подчиняющиеся законам Рауля и Вант-Гоффа, часто называются идеальными растворами. Это — сильно разбавленные (теоретически — предельно разбавленные) растворы неэлектролитов с мольной долей 0,005. Теория идеальных растворов отличается [c.202]

    В кинетической теории идеальных газов среднюю длину свободного пробега молекул определяют как отношение средней скорости молекул к частоте столкновений. Однако удобнее величину <Х> найти, используя выражение для динамической вязкости [c.55]

    ИЛИ при использовании соотношения между осмотическим давлением и концентрацией соответствующих ионов (М +) 7i=RT , вытекающего из теории идеальных растворов, [c.218]

    Уравнение (16) теории идеальной равновесной хроматографии показывает, что исправленное время удерживания компонента для различных компонентов должно различаться, что и обеспечивает газо-хроматографический анализ. [c.559]

    Приведенный пример показывает, что применение молекулярно-кинетической теории идеального газа к химическим процессам связано с рядом затруднений. В рамках кинетической теории возможны два пути преодоления этих затруднений. Во-первых, можно попытаться принять определенную модель силового поля сталкивающихся молекул и, исходя из нее, вывести все необходимые соотношения. Однако типы взаимодействия частиц достаточно разнообразны, поэтому трудно всегда пользоваться одной и той же моделью. Кроме того, получаемые аналитические соотношения, как правило, трудно применимы к конкретным расчетам из-за сложности или необходимости находить дополнительные параметры. [c.122]


    Основные положения теории идеальной форсунки. [c.222]

    Ввиду невозможности определения свойств реальных растворов допускают заведомую неточность, считая раствор идеальным. Поэтому теория идеальных растворов позволяет с тем или иным приближением решать многие проблемы, связанные с реальными растворами. [c.180]

    На основании теории идеальных газов [10] предпринята попытка создания термодинамически обоснованной модели механизма массопередачи для многокомпонентных газовых и паро-жидкостных систем. [c.209]

    Кинетическая теория идеальных газов показывает, что [c.98]

    Решение. Для определения работы адиабатического расширения воспользуемся уравнением (VI.15). Величину у определим из Ср и Су. Аргон — одноатомный газ. Следовательно, его изохорная теплоемкость на основании молекулярно-кинетической теории идеальных газов равна v= /2 R = 1,5-9,3143 = 12,4715 Дж/(моль К)  [c.47]

    Согласно изложенной теории, идеальным инертным веществом, с точки зрения предотвращения образования трещин, могло бы быть твердое вещество, не дающее усадки при 500° С, но дающее максимально быструю усадку при температуре 600° С, полностью заканчивающуюся к 650° С. Это давало бы возможность регулировать кривую усадки коксуемой массы. [c.166]

    В соответствии с молекулярно-кинетической теорией идеальных газов коэффициенты нормальной и кнудсеновской диффузии выражаются аналогичными соотношениями  [c.236]

    Для двухатомного идеального газа, как известно из кинетической теории идеального газа, Су=5/2Л. Поэтому Ср=6,96 кал/град-моль. [c.98]

    Таким образом, для разбавленных растворов оказываются справедливым (по крайней мере, приближенно) основные особенности растворов идеальных. Это позволяет применять к разбавленным растворам количественную теорию идеальных растворов. В частности, давление пара растворителя над разбавленным раствором может быть найдено ио закону Рауля (7.18). [c.205]

    Рассмотрим ламинарное слоистое движение вязкой жидкости около неподвижной твердой стенки. На самой стенке скорость жидкости равна нулю, а вблизи стенки жидкость подтормаживается под действием сил вязкости. Эта область течения вязкой жидкости, расположенная около обтекаемого тела, называется пограничным слоем. Вне пограничного слоя влияние вязкости обычно проявляется слабо и картина течения близка к той, которую дает теория идеальной жидкости. Поэтому для теоретического исследования течения вязких жидкостей все иоле течения можно разбить на две области на область пограничного слоя вблизи стенки, где следует учитывать силы трения, и на область течения вне пограничного слоя, в которой можно пренебречь силами трения и поэтому применять закономерности теории идеальной жидкости. Следовательно, пограничный слой представляет собой такую область течения вязкой жидкости, в которой величины сил трения и инерции имеют одинаковый порядок. На основании этого можно оценить толщину пограничного слоя. [c.279]

    Рио. 1.1. К выводу основного уравнения кинетической теории идеального газа. [c.10]

    Полученное выражение указывает на связь микро- и макроскопических свойств идеального газа и называется основным уравнением кинетической теории идеального газа. [c.11]

    Электролиты отличаются от так называемых идеальных растворов рядом специфических свойств. В частности, осмотическое давление, понижение точки замерзания и повышение точки кипения электролитов гораздо больше зависят от концентрации, чем этого следовало ожидать исходя из теории идеальных растворов по законам Рауля — Вант-Гоффа. [c.67]

    Закон Дальтона полностью соответствует кинетической теории идеального газа. Действительно, если взаимодействия нет, то поведение каждой частицы не зависит от наличия других частиц, и следовательно, поведение совокупности частиц одной природы не зависит от наличия совокупности частиц другой природы. [c.18]

    Эти уравнения лежат в основе кинетической теории идеального газа. Из [c.18]

    В основе кинетической теории идеальных газов лежат следующие простые допущения. [c.19]

    Статистический подход к описанию адсорбции на неоднородных поверхностях сводится к сохранению предпосылок и теории идеального адсорбированного слоя для группы мест или участков поверхности. Под идеальным адсорбированным слоем будем понимать систему адсорбент — адсорбированное вещество, удовлетворяющую следующим условиям, впервые постулированным И. Лэнгмюром 1) число адсорбционных мест конечно и не меняется в ходе адсорбции 2) места энергетически однородны 3) взаимодействие между адсорбированными частицами отсутствует. [c.88]

    Выводы о содержании частиц в растворе, основанные на расчетах свойств растворенных веществ из данных по давлению насыщенного пара над раствором, повышению температуры кипения и понижению температуры замерзания раствора, предполагают, что раствор идеален. Приложение теории идеальных растворов к реальным приводит к различного рода отклонениям, которые в конечном счете сказываются на значении расчетных констант равновесия, не являющихся действительными величинами. Однако отклонения от идеального поведения не могут объяснить столь сильного кажущегося уменьшения содержания электролита в растворе. [c.286]


    Отрыв пограничного слоя обычно связан с образованием вихрей, которые проникают во внешний поток и существенно искажают картину течения, полученную по теории идеальной жидкости, даже вдали от тела. Для пояснения приведем некоторые сведения об обтекании круглого цилиндра несжимаемой жидкостью. На рис. 6.24 показаны две кривые распределения давления вдоль окружности цилиндра штриховая кривая построена по теории идеальной жидкости, сплошная кривая получена экспериментально Флаксбартом при числе Рейнольдса [c.331]

    Рассмотрение констант Г] и Г2 в рамках теории идеальной радикальной реакционной способности приводит к заключению, что / 1 = / 2=1, т. е. константы скоростей присоединения одного из мономеров к обоим радикалам в одинаковое число раз больше констант скоростей присоединения другого мономера к этим радикалам. Для ряда систем это условие хорошо оправдывается на опыте. В таких случаях мономерные звенья обоих типов располагаются в макромолекулах случайно. Однако для многих систем Г1-Г2)<. 1, отклонения связаны с влиянием полярных и пространственных факторов, которые обусловливают тенденцию мономерных звеньев Mi и Мз к чередованию в макромолекулах. В табл. 1.2 в качестве примеров приведены значения констант сополимеризации и их произведений для некоторых пар мономеров. [c.17]

    Кинетическая теория. Молекулы газов и жидкостей находятся в состоянии непрерывного беспорядочного движения. Это движение проявляется в давлении газов, осмотическом давлении растворов, явлении диффузии и других свойствах молекул, количественно описываемых кинетической теорией идеальных газов. Для реальных газов, жидкостей и растворов положения кинетической теории применимы лишь условно. [c.333]

    Основы кинетической теории, которая объяснила газовые законы, были заложены в XVIII в. в работах М. В. Ломоносова и Я. Бернулли и получили развитие в XIX в. в трудах Р. Клаузиуса, Д. Максвелла и Л. Больцмана. Кинетическая теория идеальных газов строится на нескольких простых допущениях  [c.36]

    Рассмотрим, каким образом величину п можно вычислить из теории идеальных жидких растворов. Для чистого растворителя, обозначенного индексом 1, химический потенциал равен молярной величине С  [c.94]

    Какие опытные данные послужили основанием для создания теории идеальных жидких растворов Почему возможны идеальные жидкие растворы, хотя никакие жидкости ни при каких [c.297]

    Гидродинамическая проблематика такого рода процессов многие годы не только недооценивалась, но и в существенной мере оставалась неотчетливой. С одной стороны, казалось почти очевидным, что вследствие значительного подпора, который создает слой зерен набегающим на них потокам, и значительного удельного сопротивления самого слоя процессы в неподвижной зернистой среде почти всегда соответствуют идеальному вытеснению, следовательно, гидравлическая проблематика в данном случае ограничивается оценкой гидравлического сопротивления однородному потоку жидкости в однородной неподвижной среде и оценкой эффективных режимных и переносных характеристик процесса на уровне макрокинетических задач. Профиль скорости внутри слоя считался однородным, за исключанием пристенной области толщиной 2—3 диаметра зерна катализатора. В связи со сказанным неоднородности течения реагентов внутри слоя при расчетах аппаратов не учитывались. Это было вызвано по-видимому тем, что при исследовании реакторов отношение диаметра аппарата к диаметру зерна обычно было больше или равным 10, поэтому все неоднородности течения объясняли хорошо известными изменениями в укладке 2—3 рядов зерен [188]. С другой стороны, конкретная практика эксплуатации процессов в промышленности обнаруживала значительные несоответствия этому. Так, например, в ряде случаев происходили необъяснимые с точки зрения теории идеального вытеснения вспышки катализатора, а то и взрывы. Поскольку такого рода явления ни в лабораторных, ни в пилотных установках места обычно не имели, то эти явления относили к эффектам масштабного перехода . [c.324]

    Р е ш е н и е. Для определения работы адиабатического расширения поспользуемся уравнением (VI.15). Величину определим из Ср и С /. Аргон — одноатомный газ. Следовательно, его изохорная теплоемкость на основании выводов из молекулярно-кинетической теории идеальных газов = /2 =1,5-8,3143=12,4715 Дж/(моль-К)  [c.49]

    Таким образом, при малой интенсивности окачка уплотнения картина течения во внешнем потоке мало отличается от картины, предсказанной теорией идеальной жидкости. Это отличие заключается в небольшом искривлении скачков уплотнения в области взаимодействия. Развитие пограничного слоя в этой области происходит под воздействием плавного повышения давления и описывается обычными уравнениями пограничного слоя. Однако в большинстве случаев на практике приходится иметь дело со скачками уплотнения, интенсивность которых такова, что возникает отрыв пограничного слоя. Хотя качественная картина [c.340]

    Согласно основным представлениям 1яолекулярно-кинет.ч ческой теории идеальный одноатомный газ мол1но рассматривать как совокупность материальных точек (т. е. пренебречь размерами молекул по сравнению со средними расстояниями между ними), совершающих хаотическое тепловое движение и не взаимодействующих друг с другом. Энергия такого газа равна только кинетической энергии поступательного движения его молекул потенциальная энергия равна нулю. Обозначая через [c.27]

    В 1749 г. М. В. Ломоносов в своей работе Прибавление к размышлениям об упругости воздуха установил .. . что плотности воздуха при больших сжатиях не пропорциональны упругостям его и объяснил этот факт конечными размерами частиц. Однако после этого еще несколько десятилетий пропорциональность уменьшения объема увеличению давления считалась бесспорной. Лишь в конце XVni в. было найдено, что некоторые газы сжимаются сильнее воздуха, а при повышении давления способны сжижаться. Превращение газов в жидкость явилось фактом, не предусмотренным теорией идеального газового состояния. [c.133]

    Введение понятия идеальный раствор имеет не только теоретическое, но и практическое значение. Строго говоря, свойствами идеального раствора не обладает ни один реальный раствор, за исключением оптически активных изомеров и смесей, состоящих из компонентов, различающихся по изотопному составу. Однако очень многие растворы практически ведут себя как идеальные. Учитывая простоту закономерностей, которым следуют идеальные растворы, а также сложность и подчас невозможность вычисления свойств реальных растворов, часто приходится допускать заведо- мую неточность и считать раствор идеальным. Следовательно, теория идеальных растворов дает возможность с тем или иным [c.245]

    Без тех сведений о природе газообразного состояния. которые мы разобрали ( 4), закон Авогадро был бы непонятен. Действительно, неясно на первый взгляд, почему равные количества молекул самых разнообразных газов должны занимать одинаковый объем, несмотря на то, что различные молекулы имеют различные размеры. Закон Авогадро становится понятным с точки зрения кинетической теории идеальных газов. Согласно этой теории молекулы идеального газа в среднем находятся на расстояниях друг от друга, в десятки и сотин раз превышающих их собственные размеры. В таком случае понятно, что различие в размерах индивидуальных молекул не играет существенной роли. [c.114]

    Отношение экспериментальных значений для указанных величин к вычисленным по теории идеальных растворов косит название изотонического коэффициента г. Он, как показывает опыт, не ЯЕ1Ляется постоянной величиной, что связано с изменением общего числа частиц в растворе из-за диссоциации части молекул на ионы. Теория Гроттгуса, изложенная ранее, не объяснила этих явлений. Они получили объяснение только после того, как в 1887 г. Сванте Аррениус высказал гипотезу об электролитической диссоциации. [c.67]

    Смеси идеальных газов представляют собой растворы с наиболее простыми свойствами. Некоторые свойства идеальных газовых растворов представляют исключнтольпый интерес для термодинамики, так как они оказались обп1,имн для растворов в любых агрегатных состояниях (жидком и твердом) и послужили основой для создания термодинамической теории идеальных растворов — предельного тИпа растворов для веществ с одинаковыми межмо-лекулярными взаимодействиями при любом виде уравнения состояния системы. [c.83]


Смотреть страницы где упоминается термин Теория идеальной: [c.566]    [c.226]    [c.228]    [c.36]    [c.100]    [c.14]    [c.11]    [c.17]    [c.102]   
Курс газовой хроматографии (1967) -- [ c.29 ]

Курс газовой хроматографии Издание 2 (1974) -- [ c.36 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ других теорий центробежной форсунки для идеальной жидкости

Вывод законов идеального газа из кинетической теории

Газовая хроматография теория линейной идеальной хроматографии

Десятая лекция. Применения теоремы вириала (продолжение). Пример Богуславского. Идеальный газ. Твердое тело. Статистический постулат Больцмана. Вычисление средней энергии осциллатора Классическая теория теплоемкости твердого тела ее неудовлетворительность. Равновесное излучение. Вопрос о распределении энергии в его спектре. Классическая теория ее неудовлетворительность Статистический постулат Планка квантование энергии осциллатора

Законы идеальных газов и кинетическая теория газов

Кинетическая теория идеальных газов

Контрольные вопросы 7.7. Кинетическая теория и уравнение идеального газа

Некоторые сведения из кинетической теории газов (для идеальных газов)

Одномерное неустановившееся распространение звука в бинарной реагирующей смеси идеальных газов в случае реакции типа Теория ламинарного пламени

Основные положения кинетической теории идеальных газов. Абсолютная шкала температуры

Основы кинетической теории коррозии и ее приложение к коррозии идеально чистых металлов

Отклонения от теории идеальной реакционности, вызванные полярным эффектом

Растворы идеальные концентрированные осветление теория упругость пара

Статистическая теория идеальных растворов

Теория абсолютных скоростей реакций (ТАС) в идеальных газах

Теория идеального адсорбционного раствора

Теория идеальной радикальной реакционно

Теория идеальной радикальной реакционности

Теория идеальной форсунки

Теория идеальных (бесконечно разбавленных) растворов

Теория идеальных растворов

Теория теплоемкости идеального газа

Теория центробежной форсунки для идеальной жидкости

Теплоемкость идеального газа теория Дебая

Термодинамическая теория идеальных растворов

Упругость идеального каучука. Кинетическая теория высокоэластнчности



© 2025 chem21.info Реклама на сайте