Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Степень в электрофильтрах

    С целью увеличения степени очистки газов смачивают поверхности осаждения, вводят в газ жидкость, чем достигают увлажнения и укрупнения частиц. Укрупнение частиц достигается также обработкой газа ультразвуком [5.2, 5.58] или воздействием электрического и магнитного полей [5.64]. Гидравлическое сопротивление электрофильтров 150—200 Па. Расход электроэнергии на 1000 очищаемого газа от 0,12 до 0,20 кВт-ч. В электрофильтрах улавливается пыль с диаметром частиц более 5 мкм. В результате разделения системы Г — Т образуется газ и твердый остаток, содержащий за счет сорбции на поверхности своих частиц молекулы газообразных соединений. Санитарная очистка газов от пыли данным методом, как правило, не обеспечивается. Уловленные частицы подлежат использованию либо дополнительной переработке. [c.471]


    Подбор электрофильтра производится в соответствии с заданными условиями его работы по площади сечения активной зоны с последующим проверочным расчетом степени очистки. [c.70]

    Степень очистки газа в электрофильтре [c.73]

    Решение. Для очистки газа с большим содержанием (13 %) частиц размером от О до 5 мкм и требуемой высокой степени очистки в соответствии с табл. 3.1 из всех пылеуловителей выбираем электрофильтр. [c.75]

    Так как скорость дрейфа, а следовательно, и степень очистки зависят от диаметра частиц пыли, общую степень очистки электрофильтра следует рассчитывать по фракционным их значениям в соответствии с формулой (3.4). [c.76]

    Следовательно, требуемую степень очистки газа при заданных условиях удовлетворяет выбранный электрофильтр ДВП-2Х X 16,5 бц. [c.77]

    После этого закрывают задвижки из бункера в электрофильтр и на загрузочной линии от цистерны создают давление в бункере не более 0,5 ати путем открытия задвижки на воздушной ЛИНИН. Затем пускают компрессор, продувают загрузочную линию от бункера до транспортной линии регенератора. Одновременно открывается доступ воздуха в конус бункера для шевеления катализатора. По проведении указанных выше операций постепенно открывают регулирующие задвижки на стояке перепуска катализатора из бункера в транспортную линию. Степень открытия задвижки контролируется концентра-томером на транспортной линии регенератора. Перед перепуском катализатора из бункера в регулирующие задвижки дается сжатый воздух для отдувки. [c.143]

    Чтобы выявить влияние степени неравномерности потока на эффективность работы электрофильтра, исключив при этом другие факторы, следует оперировать не абсолютными значениями (Яун) и Л , а отношениями их к тем же величинам, но подсчитанным в предположении, что поле скоростей равномерно по сечению данного аппа])ата (М 1). Тогда на основании выражений (2.6) и (2.12) [c.59]

    С увеличением степени неравномерности aq ax (при П существенно возрастает унос пыли, особенно в электрофильтрах с высокой эффективностью очистки. [c.64]

    Выравнивание потока ускоряется при наличии сопротивления, рассредоточенного по сечению. При этом, как будет показано ниже, чем больше коэффициент сопротивления распределительного устройства тем значительнее степень выравнивания скоростей, и чем короче устройство, тем меньше протяженность пути, на котором происходит растекание потока по сечению. Постепенное выравнивание поля скоростей по сечению имеет место, например, в пластинчатых электрофильтрах (если вход потока в межэлектродные пространства этих аппаратов осуществляется с одинаковыми средними скоростями, хотя и с неравномерным для каждого пространства профилем скорости), в полых скрубберах и в других аналогичных аппаратах. Более быстрое, но также постепенное выравнивание поля скоростей происходит, например, при внешнем обтекании нескольких пучков труб в теплообменных аппаратах, при обтекании изделий в сушилах, в промышленных печах и др. [c.73]


    Следует отметить, что в описанных исследованиях были получены сравнительные данные для одного и того же электрофильтра при различных степенях неравномерности потока. Полученные результаты практически хорошо согласуются с теоретическими выводами о наличии влияния неравномерности потока на эффективность очистки и с достаточной для практики точностью подтверждают справедливость формулы (2.13). [c.76]

    Электрофильтр ЭГЗ-4-177, установленный за групповым циклоном [70]. Газовый поток поступает в электрофильтр 2 из группового циклона I (рис. 9.5), и степень расширения аппарата получается более значительной, чем для описанных электрофильтров, а именно FjF = 14. Кроме того, как показали опыты, коэффициент неравномерности в узком сечении подводящего диффузора получился равным примерно 1,8. Отсюда по расчету rt 3 Ср 8 и f 0,4. [c.230]

    Штейнберг М. Е. К выбору допустимой степени неравномерности распределения потока по ряду электрофильтров. — Пром. и санит, очистка газов. М. ЦНИИТЭнефтехим, [c.342]

    Вт/см используются частоты колебаний от сотен герц до десятков килогерц, рациональная исходная концентрация должна быть больше 1 г/мЗ. Целесообразно сочетать акустическую коагуляцию с другими методами инерционными и электрическими. Степень очистки газов электрофильтрами зависит от скорости дрейфа частиц  [c.135]

    Степень очистки (к, п. д.) электрофильтра рассчитывают по уравнению [c.353]

    Максимально возможное снижение температуры очищаемых газов пиролиза положительно сказывается как на эффективности работы пенного аппарата, так и на эффективности электрофильтра, обеспечивая тем самым необходимую степень очистки всей установкой. Кроме того, глубокое охлаждение газов пиролиза позволило исключить из схемы пенный аппарат — теплообменник, устанавливаемый ранее за электрофильтром. [c.275]

    Обычно электрофильтры рассчитываются по практическим данным о скорости газа, при которой достигается требуемая степень очистки. Подробнее см. [IV-]]. [c.495]

    Электрофильтры — аппараты тонкой очистки газов. Они улавливают частицы размером от 0,01 мкм. Степень очистки зависит от числа электрических полей и может достигать 99,9% и более. [c.357]

    При расчете электрофильтров обычно исходят из рекомендуемых на основании опытных данных степени очистки, скорости газа в аппарате, времени пребывания газа в электрическом поле и плотности тока. [c.65]

    Улучшение пылеулавливания требует обычно увеличения либо размеров аппаратуры, либо ее энергоемкости. Так, рукавные фильтры, осадительные камеры, электрофильтры работают более эффективно при меньших скоростях газа, т. е. при больших размерах аппаратов. Циклоны, скоростные промыватели, скрубберы ударного действия в режиме эффективного пылеулавливания имеют большое гидравлическое сопротивление или требуют увеличенного расхода жидкости, что приводит к повышенным затратам энергии. Чем мельче частицы аэрозоля и выше требования к степени их улавливания, тем больше затраты на сооружение установок и их эксплуатацию. В связи с распространением в химической промышленности установок большой единичной мощности, обычно более экономически эффективных по сравнению с установками малой производительности, объемы перерабатываемых газов настолько возросли, что размеры аппаратов малой энергоемкости, работающих при низких скоростях, становятся чрезмерно большими. [c.237]

    Рукавные (тканевые) фильтры и электрофильтры позволяют достичь высокой степени очистки, в том числе от мелких частиц, но часто требуют предварительной подготовки газа — в основном охлаждения до определенной температуры. Для электрофильтров выбирают оптимальные условия работы (температуру, влажность, скорость газа, конструкцию и метод встряхивания электродов) в зависимости от электропроводности пыли, ее слипаемости, дисперсности и химического состава газа. Электрофильтры, по сравнению с другими аппаратами тонкой очистки, обладают минимальным гидравлическим сопротивлением и большими возможностями автоматизации процесса. По размерам электрофильтры близки к рукавным, требуют больших капитальных затрат, но эксплуатация их дешевле. Сухие электрофильтры работают при температуре до 400—500 °С. Они наиболее экономичны при больших объемах газа (начиная с 0,5-10 м /ч). При малой производительности использование электрофильтров приводит к неоправданному возрастанию удельных затрат. Кроме того, электрофильтры нельзя использовать при обработке взрывоопасных газовых сред. В этих случаях целесообразно устанавливать рукавные фильтры или мокрые пылеуловители. [c.238]

    В наибольшей степени технология прокаливания кокса в России и США отличается по узлам обработки дымовых газов. В России, ранее ориентированной на прокаливание пековых и нефтяных кусковых коксов с малым содержанием пыли, а также на максимальное использование дефицитного кокса, была создана сложная технология с использованием мультициклонов и электрофильтров, обеспечивающих улавливание части пыли из дымовых газов. Такая технология оказалась громоздкой, малоэффективной и ненадежной. Уловленная пыль была окисленной, озоленной (до 5% зольности) и ухудшала качество анодной продукции. [c.91]


    Для оценки степени очистки газа в электрофильтрах предлагается следующее уравнение  [c.432]

    Содействие, оказываемое электрическим ветром, представляет собой важный эффект второго порядка, который должен учитываться в любом обширном исследовании свойств электрофильтра. Например, при рассмотрении вопроса о накоплении золы, которое наблюдается на проволочных коронирующих электродах электрофильтра и для устранения которой необходимо устанавливать специальное устройство стряхивания, Шейл предполагает, что это осаждение в значительной степени обусловлено воздействием электрического ветра, создаваемого ионами газа с полярностью, противоположной полярности коронирующего электрода. Эти ионы образуются под влиянием короны, являясь одновременно частью ее. [c.463]

    Электрофильтры обеспечивают высокую степень очистки газов при сравнительио низких энергозатратах. Эффективность очистки газов достигает 99%, а в ряде случаев — 99,9%. Электрофильтр— аппарат или установка, в которых для отделения взвешенных частиц от газов используют электрические силы. [c.46]

    Локальные хлопки и загорания отмечались в фильтрах фтале-вого ангидрида, нафталина, в мокрых электрофильтрах сажевых производств. При выборе фильтров пылегазовых смесей необходимо учитывать характер частиц и возможность образования взрывоопасных смесей с воздухом. При удалении осевшей пыли во время встряхивания фильтрующих элементов и достаточно мощном импульсе пыль может взрываться. Поэтому весьма целесообразно добавлять инертный газ в поток, с тем чтобы снизить концентрацию кислорода и предупредить образование взрывоопасной среды. Особенно важно это делать при вскрытии и чистке аппаратов или выполнении других нерегламентированных операций на работающих фильтрах. Заслуживает внимания механизм выгрузки пыли, его надежная работа зависит от степени герметичности отдельных элементов и всего агрегата фильтрации. [c.156]

    Практика эксплуатации электрофильтров в производстве фосфора показала пх недостатки они не обеспечивают необходимую степень очистки печного газа, имеют несоверщенный меха ю1зм встряхивания и обстукивания, быстро забиваются грязью и пылью. Поскольку степень очистки от пыли недостаточна, большое количество пыли попадает в аппараты для конденсации фосфора, что приводит к загрязнению фосфора и образованию фосфорного щла-ма. Шлам затрудняет дальнейщие тех1Нологические операции (требуется отстой фосфора, происходит забивка аппаратуры, затрудняется перекачка фосфора насосами и т. д.). [c.77]

    Газораспределительные решетки в виде перфорированных листов давно используют в электрофильт 1ах, где степень неравномерности распределения скоростей по сечению рабочей камеры, вследствие резкого перехода от относительно малой площади сечения подводящего газохода к площади сечения рабочей камеры электрофильтра, была бы особенно значительна без таких решеток. Но не было рациональных методов подбора этих решеток их выбор производился чисто эмпирически или умозрительно. [c.10]

    Для получения зависимости коэффициента очистки т] от коэффициента поля скоростей /И искусственно создавалась различная степень неравномерности распределения скоростей по сечению электрофильтра. Для этого использовались газораспределительные решетки 8, размещенные в у()оркамере электрофильтра, и специально установленный в подводящем газоходе шибер 4. Опыты проводились при следующих вариантах работы элементов  [c.74]

    При указанных условиях входа в электрофильтр определяли также и коэффициент очистки т]. В этом случае средняя скорость газового потока в рабочем сечении электрофильтра са,. = пу, 2 м с, а электрический режим поддерживался близким к постоянному. Полученные значения М подставляли в ([юрмулу (2.13) для подсчега величины i). Коэффициент ky определяли один раз (для варианте 1) с наиболее равномерным распределением скоросте.й по значению и соогвегствующему ему опытному значению 1) Мк = 1,008 97,0 % ky 0,14. Расчетные значения для других степеней неравномерности распределения скоростей определяли ио формуле, вытекающей из выражения (2.13)  [c.76]

    Опытно-промышленный электрофильтр для котлов ТЭС большой мощности [70]. Описанная выше модель опытно-промышленного электрофильтра с 12-метровыми электродами исследовалась также нри подводе потока через вертикальную шахту снизу oтнoнJ пиe Рк1Ра=1. Участок, непосредственно примыкающий к фор1 амере был выполнен в двух основных вариантах вариант I—в виде колена с большой степенью расширения при наличии в нем направляющих лопаток вариант II — в виде раздающего коллектора, одна из боковых стенок (на входе в форкамеру) которого представляла собой сплошную решетку из уголков или объемную из объемных стержней треугольной формы (табл. 9.8). [c.239]

    Систему осадительных. электродов в данном электрофильтре можно рассматрпплп, как трубчатую решетку, выравнивающее действие которой достаточно заметно. Как показали расчеты, коэфф.ициснт сопротивления этой решетки (электродов), приведенный к средней скорости перед ее [[фонтом (в сечении корпуса), Ц ,, , = 26р ,-,/()тк 13. Под н.т-янисм этого сопротивления степень растекания потока при заданном отношении плоищдсн Рк/Ро = 12 и принятом Л о г 2 согласно выражению (4.85) [c.253]

    Как уже отмечалось, распределение скоростей по сечению аппаратов зависит не только от форм и параметров подводящих участков, непосредственно примыкающих к ним, но и от условий подвода потока к этим участкам. В группе параллельно работающих аппаратов равномерность распределения расходов по отдельным аппаратам зависит от формы и параметров подводящих участков, от степени идентичности условий подвода к каждому из аппаратов, а также условий отвода потока из них. Однако на практие эти условия не всегда выполняются. Например, к групповому электрофильтру газовый поток, как правило, подводится через один общий раздающий коллектор и отводится через один обп й собирающий коллектор. При неправильном выборе геометрии этих коллекторов, стесненных условиях подвода (отвода) потока к ним и ряде других причин расход дымовых газов через отдельные электрофильтры (или секции) оказывается неодинаковым, что приводит к снижению эффективности очистки газов этими аппаратами. Ниже рассмотрены некоторые примеры. [c.260]

    В-третьих, однопол очные аппараты ввиду простоты их конструкции заманчиво применять для короткой схемы сухой очистки [1, 26] производства серной кислоты контактным способом на газе от обжига серного колчедана. В этом случае газ, содержащий 8—10% ЗОз, после неполной сухой очистки поступает в контактный аппарат. Минимальная степень превращения для короткой схемы составляет около 80%, поэтому необходим высокий слой катализатора — 350— 450 мм. Оптимальная температура составляет 520—500° С, тогда как при адиабатическом режиме [уравнение (111.12)] она была бы 700° С. Поэтому необходимо отводить из слоя большое количество тепла и целесообразно устанавливать трубы парового котла непосредственно в кипящем слое катализатора, используя хорошую теплоотдачу. Газ после контактного аппарата охлаждается в теплообменниках, затем серный ангидрид абсорбируется с образованием загрязненного олеума и моногидрата, а оставшийся чистый газ поступает во вторую стадию окисления в аппарат с фильтрующими слоями катализатора и затем на повторную абсорбцию. Достигается весьма высокая степень окисления 30а х = 0,995), а также более полная абсорбция серного ангидрида. Загрязнение атмосферы уменьшается в несколько раз по сравнению с обычными системами. Себестоимость кислоты по сравнению с обычными установками снижается вследствие отсутствия громоздких и дорогих в эксплуатации мокрых электрофильтров и промывных башен, а также благодаря использованию тепла реакций для получения пара. [c.151]

    Метод основан на ионизации и заряжении взвешенных частиц пыли при прохождении газа через поле высокого напряжения, создаваемое коронирующими электродами. Осаж дение частиц происходит на зазе мленных осадительных электродах Для улавливания туманов применя ют мокрые электрофильтры. Электро статическая очистка — один из лучших способов улавливания пылей, сочетающий простоту, низкое гидравлическое сопротивление и высокую производительность с высокой степенью очистки. Метод универсален, т. е. применяется для любых пылей полидисперсного состава. Недостаток — большие капиталовложения на сооружение очистной установки и необходимость расхода электроэнергии на очистку [c.233]

    Работают при напряжении на коронирую-щих электродах 25—100 кВ и в широком диапазоне температур (от —70 до 500°С) и давлений. ДР не более 100—150 Па. Расход электроэнергии 0,2—0,3 кВтч на 1000 м очищаемого газа. Степень очистки выше 90%, достигая 99,9% на многопольных электрофильтрах при оптимальном режиме и дисперсности пыли не менее [c.233]

    Опытные данные показывают, что очистка воздуха от различных промышленных пылей (механического уноса) протекает в пенном пылеуловителе очень эффективно. Степень улавливания пыли с размером частиц dr 15 мкм достигает в оптимальных режимных условиях Tij, = 0,995, не снижаясь ниже 0,95, а коэффициент скорости пылеулавливания лежит в пределах 2—5 м/с. Сопоставляя эти данные с показателями работы других типов пылеуловителей, можно видеть, что пенный аппарат работает примерно в 5—10 раз интенсивней электрофильтров (при несколько лучшей степени очистки) и более чем в 20 раз интенсивней насадочных скрубберов (при значительно лучшей степени очистки). [c.170]

    На Новомосковском химическом комбинате испытывали [123] пенный аппарат для улавливания горячей серной кислотой тумана Н2804, выделяемого барботажпыми концентраторами серной кислоты. Условия образования и улавливания тумана при концентрировании серной кислоты принципиально иные, чем при переработке печного газа. В этом случае улавливание мелкодисперсного сухого тумана является особенно трудной задачей. В двухполочной аппарате степень очистки достигала 75%. Выявлена равноценность работы последующих полок, что определяет возможность достижения достаточно полной очистки газа от тумана в многополочном пенном туманоуловителе. Кроме того, установлена возможность применения одно- и двухполочного пенного аппарата для предварительной очистки газа перед электрофильтрами с целью улучшения их работы снижения концентрации тумана в выхлопном газе электрофильтров. [c.186]

    Степень поглощения фосфорного ангидрида в башне сжигания 50%, в башне гидратации 44,5% и в электрофильтре 5,5% от обп1,его его количества. [c.350]

    Расчет электрофильтра по скорости осаждения частиц в электрическом поле сложен из-за необходимости учета множества факторов, влияющих на осаждение. Необходимо знать дисперсный состав пыли, диэлектрическую проницаемость ее частиц, свойства газа и пыли и учесть их влияние на режим работы элерстро-фильтра. В связи с этим электрофильтры обычно подбирают, используя практические данные о допускаемой скорости очищаемых газов в электрическом поле электрофильтра (в пределах 0,2—1,5 м/с). Конструкцию электрофильтра выбирают также по данным эксплуатационного опыта она должна обеспечивать необходимую степень улавливания пыли из газового потока и надежность в работе. [c.231]

    Приведенные выше теоретические основы расчета электрофильтров дали возможность вывести уравнение для степени осаждоиия (очистки)  [c.392]

    В электрическом поле электрофильтров принципиально любая частица, даже самая мелкая, может получить заряд и в отличие от циклонов при соответствующем времени очистки может быть осал. дона. Поатоигу в электрофильтрах, как и в рукавных тканевых фильтрах, моячно получить степень очистки, близкую к 100%,. и вопрос о степени очистки здесь вопрос пе техники, а экономики. Далее гидравлическое сопротивление электрофильтров в несколько раз меньше, чем циклонов и тканевых фильтров, обычно оно составляет 5—20 мм вод. ст. Кроме того, конструкции электрофильтров в oтJrичиe от рукавных фильтров могут быть приспособлены к любым производственным условиям (горячий газ, мокрый газ, химически активные суспензии и т. д.) путем соответствующего выбора материалов, форм электродов и методов защиты высоковольтных изоляторов. Наконец, работу электрофильтров можно полностью автоматизировать и механизировать, а расход энергии на очистку сравнительно невелик — в среднем 0,5—0,8 кеч па 1000 м газа. [c.393]

    В предыдущих разделах рассматривали удаление частиц и капель из потоков газа с помощью электростатических сил. Однако практическая эффективность электрофильтра зависит от ряда вторичных фа.кторов, определяемых поведением пыли пря лооа-данпи ее на осадительные электроды и при ее удалении с этих электродов. Эти факторы зависят от типа пыли, ее физических свойств — размера частиц и удельного сопротивления — и в определенной степени от общей скорости газа в электрофильтре. Они учитываются в эффективной скорости миграции (э.с. м.), которую рассчитывают с помощью к.п.д. электрофильтра [уравнение (Х.56)] п удельной площади поверхности осаждения (рассчитанной) на едиинцу объема. [c.463]

    Удаление крупной фракции частиц также приводит к прилипанию пыли, состоящей из мельчайших частиц, к электродам, что в значительной степени затрудняет ее последующее удаление путем стряхивания [440]. Осадить весь углерод (сажу) в электрофильтре практически невозможно из-за ее низкого удельного сопротивления, поэтому электрофильтр действует как агло-мератор. Чтобы добиться окончательной очистки, вслед за электрофильтром устанавливают низкоскоростные циклоны, а затем мешач ные фильтры или скрубберы с трубами Вантуря. [c.509]


Смотреть страницы где упоминается термин Степень в электрофильтрах: [c.156]    [c.219]    [c.239]    [c.260]    [c.347]    [c.432]    [c.291]   
Основные процессы и аппараты Изд10 (2004) -- [ c.242 , c.243 ]

Основные процессы и аппараты химической технологии Издание 8 (1971) -- [ c.255 ]




ПОИСК





Смотрите так же термины и статьи:

Электрофильтр



© 2025 chem21.info Реклама на сайте