Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сложные эфиры гликолей

    Сложные эфиры гликолей. Из них этиленкарбонат и пропилен-карбонат [c.290]

    Другие сложные эфиры гликолей обычно получают рассмотренной ранее этернфикацией гликолей карбоновыми кислотами. Одна-iполучения моноэфиров интересен прямой синтез из оксида этилена и карбоновой кислоты  [c.290]

    Окись этилена реагирует с органическими кислотами, давая сложные эфиры гликолей. При нагревании окиси этилена с уксусной кислотой получается моноацетат этиленгликоля  [c.288]


    В кислой среДе (например, в растворе уксусной кислоты) из упомянутых соединений при действии надуксусной кислоты образуются ацетильные производные а-гликолей (образующихся из соответствующих окисей путем ацетолиза). Производные сложных эфиров гликоля при окислении надбензойной и мононадфталевой кислотой не образуются . [c.662]

    Из сложных эфиров гликолей и неорганических кислот (нитратов, сульфатов, боратов, карбонатов и др.) наиболее подробно описаны этилен и диэтиленгликольдинитраты. Они полностью смешиваются с диэтиловым эфиром, ацетоном, бензолом, метиловым спиртом, нитроглицерином, хлороформом и ограниченно с водой [30]. [c.299]

    В качестве растворителей предлагались различные простые и сложные эфиры гликолей, фурфурол и органические основания [15]. Смит и Браун [16] исследовали возможность использования метилового спирта, этилен- [c.211]

    Моноэфиры этилен- и диэтиленгликоля широко применяют в качестве растворителей для лаков и красок. Свободную гидроксильную группу, находящуюся в молекуле этих эфиров, можно дополнительно этерифициро-вать, например, уксусной кислотой. В результате получается новый ряд растворителей, представляющих собой смешанные простые и сложные эфиры гликолей. Ниже приведена схема образования различных эфиров гликолей  [c.359]

    За последнее время наряду с нитроглицерином большое значение в качестве взрывчатых веществ приобрели нитрогликоли, т. е. сложные эфиры гликолей и азотной кислоты  [c.176]

    Алкоголиз протекает легко при взбалтывании сложных эфиров предельных или непредельных карбоновых кислот при обычной температуре с 10-кратным количеством спирта с добавкой металлического калия или натрия. Особенно легко протекает переэтерифи-кация первичных алкокси-радикалов, в случае же вторичных и третичных спиртов необходимо нагревание. Аналогично проводится и алкоголиз сложных эфиров гликолей, причем с абсолютным спиртом в присутствии натрия получается 75—85% этиленгликоля  [c.545]

    Сложные эфиры гликолей [c.65]

    Иодид лития хорошо растворяется в спиртах (метиловом, этиловом , пропиловом, изобутиловом, изоамиловом), сложных эфирах, гликоле, анилине, пиридине и других органических растворителях [2]. [c.36]

    Весьма перспективным способом получения сложных эфиров гликолей является сопряженное присоединение монокарбоновой кислоты к олефину в процессе его каталитического окисления  [c.310]


    При сопряженном окислении олефинов и бензальдегида образуются и другие продукты (эпоксидные соединения и гликоли или сложные эфиры гликолей), сходные по составу с полученными при прямом окислении олефииов. [c.487]

    При гидрировании альдегидов нециклического строения под давлением и лри высокой температуре с никелем, кроме нормально ожидаемых спиртов получаются спирты с удвоенным числом углеродных атомов. Первоначальное предположение, что эти спирты обладают неразветвленной цепью, не подтвердилось. Более глубокое изучение полученных продуктов позволило установить, что цепи получаются разветвленные. Аналогичное удвоение числа углеродных атомов наблюдалось при нагревании альдегидов в стальном автоклаве в атмосфере азота. Установлено, что наряду с непредельными альдегидами с двойным числом углеродов образуются тримерные продукты, представляющие сложные эфиры гликолей типа [c.176]

    Весьма интересной разновидностью сложных эфиров гликолей являются алкиленкарбонаты — циклические эфиры угольной кислоты [31, 32]. Вследствие большой полярности эти эфиры смешиваются со многими органическими высокомолекулярными веществами и водой. Особенно удобен в работе пропиленкарбонат, который в отличие от кристаллического этиленкарбоната прп обычных условиях является достаточно подвижной жидкостью (т. пл. минус 49,2 "С). [c.299]

    Каталитическое отщепление воды и кислоты ог сложных эфиров гликолей  [c.25]

    С органическими кислотами или их производными (ацилхлоридами, сложными эфирами) гликоль образует сложные эфиры  [c.303]

    Полиуретановые каучуки [10, 11] получаются по реакции ступенчатой полимеризации диизоцианатов с простыми и сложными эфирами гликолей, например  [c.171]

    Третий общий метод получения сложных эфиров гликолей заключается в конденсации окисей олефинов с беэводными органическими кислотами, часто в присутствии конденогрующих реагентов. Этим методом Wurtz получал моно-и диацетаты этиленгликоля согласно уравнениям  [c.563]

    Со спиртами окись этилена реагирует, образуя простые эфиры, а с кислотами — сложные эфиры гликоля  [c.344]

    Ход реакции еще не полностью выяснен. При реакции с тетраацетатом свинца первоначально образующийся сложный эфир гликоля и окислителя, по-видимому, претерпевает ионное расщепление. г/с-Гликоли расщепляют-ся в общем быстрее, чем их транс-изомеры. [c.355]

    Склонность к гидро.пизу ограничивает применение сложных эфиров гликолей, полученных из окисей олефинов и низших кислот. Этиленгликольдиформиат предложено даже использовать в реакциях и процессах, где желательно постепенное образование муравьиной кислоты, В отсутствие воды сложные эфиры могут служить растворителями. Наиболее распространен диацетат этиленгликоля, как вы-сококипяш,ий, медленно испаряюш ийся растворитель эфиров целлюлозы и фторированных углеводородов. ]В смесях с другими растворителями он употребляется для очистки смазочных масел от свободных жирных кислот [2, р. 128]. [c.324]

    Последовательные реакции широко распространены. К ним относятся, в частности, реакции гидролиза сложных эфиров дикарбоновых кислот, или сложных эфиров гликолей, или дигалоидо-производных. Кинетику последовательно протекающих процессов радиоактивных превращений можно рассматривать как частный случай кинетики ряда последовательных реакций первого порядка ( 230). [c.473]

    Г1ри нагревании и под действием облучения простые и сложные эфиры гликолей распадаются с образованием легкокипяш,их и смолистых продуктов. Разложение ускоряется в кислой среде и может сопровождаться реакцией диспропорционирования. В присутствии хлорного железа нз монометилового эфира этнленгликоля образуется диметиловый эфир этиленгликоля и этиленгликоль - [c.302]

    В моностеара ге и монолаурате пентаэритрита гидрофильными группировками служат ОН-группы в дан ном случае требуется наличие в молекуле моющего вещества нескольких гидроксильных групп, что обусловлено меньшей гидрофильностью гидроксила по сравнению с сульфатной, карбоксильной или сульфонатной группировками (группировки перечислены в порядке уменьшения их гидрофильности). Аналогичные поверхностно-активные вещества — сложные эфиры гликоля— получают гри обработке жирной кислоты окисью этилена. [c.614]

    Известно, что сложные эфиры гликолей, являются полупродуктами в синтезе ряда важных продуктов химической промышленности. Так, например, в соответствии с патентом США 3 586716, при гидролизе эфиров, таких как моно- и диацетатов этиленгликоля, получают этиленгликоль в заявке ФРГ № 2 412136 описан метод расш,епления моноацетата пропиленгликоля с получением окиси пропилена. [c.201]

    Из всех сложных эфиров гликолей наибольшее распространение имеют эфиры высших карбоновых кислот, которые обладают свойствами неионогенных ПАВ и прекрасно совмещаются со многими полимерными материалами [33, 34]. Если сложные эфиры этих кислот и моноэтилеп- и пропиленгликолей — кристаллические вещества (табл. 90), то продукты, содержащие несколько оксиалки-леновых групп, пастообразны. Поверхностная активность эфиров [c.299]

    Смесь цис- п /гаракс-изомеров циклических диолов проанализирована на основе реакции с борной кислотой — последняя реагирует только с цис-гидроксильными группами [17]. Количественное определение простых моноэфиров гликолей основано главным образом на реакциях ацилирования и осуществляется так же, как и анализ гликолей. Сложные эфиры гликолей определяют качественно и количественно гидролизо.м щелочалш. После гидродиза раствор титруют соляной кислотой в присутствии фенолфталеина уменьшение содержания щелочи пропорционально количеству сложного эфира в пробе. Параллельно проводят холостой опыт [4, р. 981]. [c.340]


    По стабильности сложные эфиры гликолей значительно уступают простым главным образом из-за способности к гидролизу и иереэтернфикации. Этиленгликольдиформиат медленно гидролизуется уже при обычных условиях  [c.304]

    Из низкомолекулярных сложных эфиров гликолей относительно стойки к гидролизу алкиленкарбонаты, в частности пропиленкарбонат. С водой он образует три типа соединений, распадаюш,ихся при умеренном нагревании до исходных веш,еств [32]  [c.304]

    При рассмотрении различных схем аутоокисления олефинов необходимо иметь в виду следующие факты 1) окисление 2,2,5, 5-тетраметилгексена-З не начинается даже после добавления значительного количества гидроперекисного инициатора в силу своего строения этот олефин неспособен к образованию аллильной гидроперекиси, но возможно, что его низкая реакционная способность вызвана также и стерическими факторами 2) стильбен, неспособный к образованию аллильной гидроперекиси и не окисляющийся при введении перекисного инициатора , дает эпоксидную группу и сложные эфиры гликоля в случае сопряженного окисления с бензальдегидом. Эти данные подтверждают, что реакции аутоокисления олефинов предшествует возникновение аллильных пероксирадикалов или гидроперекисей. [c.479]

    Из сложных эфиров гликолей, относяш,ихся к первой группе, наиболее перспективны как растворители и гидротропные вещества алкиленкарбонаты.. Этилен- и пропиленкарбонаты в колйчестве 100—200 г/л интенсифицируют процесс крашения за счет увеличения содержания фиксированного красителя и снижения нагрева рабочего раствора. При этом они активны как в водной, так и спиртовой средах [122]. Пропиленкарбонат оказался пригодным для избирательной сорбции воды и двуокиси углерода при очистке промышленного и природного газов [31]. Динитрат диэтиленгликоля при- [c.324]

    Сходным образом Болланд и Хьюгис объясняли образование циклической перекиси при окислении сквалена. В приведенном уравнении Н" —алкенил или какая-нибудь другая группа, способная превращаться в пероксирадикал. Радикалы этого типа ранее считались промежуточными соединениями, из которых получаются эпоксиды что доказывалось появлением последних в тех случаях, когда образуется пероксирадикал (например, при разложении ди-гр г-гептилперекиси) Однако для обеспечения высокого выхода эпоксидов, гликолей и сложных эфиров гликолей (образование которых связано с эпоксидами) при окислении 2,4, 4-триметилпентена-1 необходимо, чтобы высоким был также и выход реакций, ведущих к образованию радикала Н"Оз и его превраи[ению в эпоксиды. [c.476]

    Получение изотопных изомеров на примере грег-бутилфенилке-тона можно представить следующим образом. После образования оксониево-карбониевой соли кетона и хлорной кислоты — катализатора (обозначенного на схемах НА) процесс изомерного превращения протекает по двум механизмам, каждый из которых состоит из двух стадий. В первом варианте на начальной стадии образуется неполный сложный эфир гликоля и катализатора с гидролитическим разложением эфира на следующей стадии. В реакции, идущей по механизму I, образуется кетон, в котором радиоактивная метка сохраняется в карбонильной группе  [c.250]

    Реакции этиленхлоргидрина являются типичными для всего класса а-хлор-гидринов. Особое внимание привлекает реакционная активность галоидного атома в галоидгидринах, значительно превышающая активность галоидного атома в дигалоидозамещенных олефинах. В то время как дихлорэтан только очень медленно реагирует с раствором карбоната натрия при 100°, этиленхлоргидрин гидролизуется одной водой (около 15% при 97° в течение 12 часов) и количественно превращался в этиленгликоль в течение 1 часа при действии раствора карбоната натрия при 105° Можно было бы привести много других примеров. Так например этиленхлоргидрин реагирует с сульфидом натрия, давая тиодигли-коль с аминами или едкими щелочами он образует окись этилена со щелочными цианидами получаются соответствующие нитрилы. Кроме того на реакционную активность хлорного атома заметно не влияет этерификация гидроксильной группы, и можно приготовить сложные эфиры гликолей действием натриевых солей органических кислот на соответствующие хлоргидрины. [c.527]

    Holde 2 показал, что окисление парафинов воздухом при 135—145° приводит к образованию ангидридо1В кислот, нерастворимых в 94 7 -ном спирте. Эти ангидриды реагировали с 72%-ным спиртом, образуя сложные этиловые эфиры. Выла предположена возможность замены естественных жиров сложными эфирами гликоля и глицерина. [c.1015]


Смотреть страницы где упоминается термин Сложные эфиры гликолей: [c.400]    [c.717]    [c.148]    [c.325]    [c.479]    [c.488]    [c.488]    [c.185]    [c.348]    [c.562]   
Химия и технология основного органического и нефтехимического синтеза (1988) -- [ c.200 , c.278 ]

Курс органической химии Издание 4 (1985) -- [ c.134 ]




ПОИСК





Смотрите так же термины и статьи:

Гликоли

Гликоляты

Эфир гликоля



© 2025 chem21.info Реклама на сайте