Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

также Гликолиз, Глюконеогенез a Глюкоза

    Сахарный диабет. В регуляции гликолиза и глюконеогенеза большую роль играет инсулин. При недостаточности содержания инсулина возникает заболевание, которое носит название сахарный диабет повышается концентрация глюкозы в крови (гипергликемия), появляется глюкоза в моче (глюкозурия) и уменьшается содержание гликогена в печени. Мышечная ткань при этом утрачивает способность утилизировать глюкозу крови. В печени при общем снижении интенсивности биосинтетических процессов биосинтеза белков, синтеза жирных кислот из продуктов распада глюкозы—наблюдается усиленный синтез ферментов глюконеогенеза. При введении инсулина больным диабетом происходит коррекция метаболических сдвигов нормализуется проницаемость мембран мышечных клеток для глюкозы, восстанавливается соотношение между гликолизом и глюконеогенезом. Инсулин контролирует эти процессы на генетическом уровне как индуктор синтеза ключевых ферментов гликолиза гексокиназы, фосфофруктокиназы и пируваткиназы. Инсулин также индуцирует синтез гликогенсинтазы. Одновременно инсулин действует как репрессор синтеза ключевых ферментов глюконеогенеза. Следует отметить, что индукторами [c.359]


    В гетеротрофных организмах важнейшим источником новообразования глюкозы — глюконеогенеза — является пировиноградная кислота. Последняя представляет собой не только продукт гликолиза, но и продукт превращения (в результате ряда реакций) соединений цикла трикарбоновых кислот, а также аминокислот (схема 5). [c.195]

    Печень участвует также в метаболизме аминокислот, поступающих время от времени из периферических тканей. Спустя несколько часов после каждого приема пищи из мышц в печень поступает аланин в печени он подвергается дезаминированию, а образующийся пируват в результате глюконеогенеза превращается в глюкозу крови (разд. 19.12). Глюкоза возвращается в скелетные мышцы для восполнения в них запасов гликогена. Одна из функций этого циклического процесса, называемого циклом глюкоза-аланин, состоит в том, что он смягчает колебания уровня глюкозы в крови в период между приемами пищи. Сразу после переваривания и всасывания углеводов пищи, а также после превращения части гликогена печени в глюкозу в кровь поступает достаточное количество глюкозы. Но в период, предшествующий очередному приему пищи, происходит частичный распад мышечных белков до аминокислот, которые путем переаминирования передают свои аминогруппы на продукт гликолиза пируват с образованием аланина. Таким образом, в виде аланина в печень доставляется и пируват, и КНз. В печени аланин подвергается дезаминированию, образующийся пируват превращается в глюкозу, поступающую в кровь, а КНз включается в состав мочевины и выводится из организма. Возникший в мышцах дефицит аминокислот в дальнейшем после еды восполняется за счет всасываемых аминокислот пищи. [c.754]

    Углеводный обмен. В плане влияния на углеводный обмен гормон роста является антагонистом инсулина. Гипергликемия, возникающая после введения ГР,— результат сочетания сниженной периферической утилизации глюкозы и ее повышенной продукции печенью в процессе глюконеогенеза. Действуя на печень, ГР увеличивает содержание в ней гликогена, вероятно, вследствие активации глюконеогенеза из аминокислот. ГР может вызывать нарушение некоторых стадий гликолиза, а также торможение транспорта глюкозы. Обусловлен ли данный эффект прямым действием ГР на транспорт или он является результатом подавления гликолиза, пока не установлено. Ингибирование гликолиза в мышцах может быть также связано с мобилизацией жирных кислот из триацилглицероловых резервов. При длительном введении ГР существует опасность возникновения сахарного диабета. [c.175]

    Подобно тому как превращение глюкозы в пируват представляет собой центральный путь в катаболизме углеводов, превращение пирувата в глюкозу является центральным путем глюконеогенеза. Пути эти не идентичны, хотя и включают ряд общих этапов (рис. 20-2). Семь ферментативных реакций гликолиза свойственны также и глюконеогенезу все они легко обратимы. [c.602]


    Мышцы также синтезируют и высвобождают большие количества аланина и глутамина. В синтезе этих соединений используются аминогруппы, которые образуются при распаде аминокислот с разветвленной цепью и затем переносятся на а-кетоглутарат и пируват в ходе реакций трансаминирования. Источником почти всего пирувата, идущего на синтез аланина, является гликолиз из экзогенной глюкозы. Эти реакции формируют так называемый глюко-зо-аланиновый цикл, в котором аланин мышц используется в процессе печеночного глюконеогенеза и в то же время доставляет в печень аминогруппы, удаляемые в виде мочевины. [c.341]

    В случае как синтеза и распада гликогена, так и гликолиза и глюконеогенеза направление метаболизма глюкозы в печени связано с ритмом питания. При пищеварении значительная часть глюкозы (около половины) из крови воротной вены задерживается печенью, откладывается в форме гликогена, а также используется для синтеза жиров. Исходные суб- [c.154]

    Обходный путь требуется для превращения пирувата в фос фоенолпируват. . . . . Второй обходный путь в ГЛЮ конеогенезе-это превращение фруктозо-1,6-дифосфата во фрук-тозо-6-фосфат. . . . . Третий обходный путь-это путь, ведущий от глюкозо-6-фосфата к свободной глюкозе. . . . Глюконеогенез требует значительных затрат энергии. . . Реципрокная регуляция глюконеогенеза и гликолиза. . , . Промежуточные продукты цикла лимонной кислоты являются также предшественниками глюкозы. ........ [c.729]

    Глюконеогенез ЭТО образование нового сахара из неуглеводных предшественников, среди которых наибольшее значение имеют пируват, лактат, промежуточные продукты цикла лимонной кислоты и многие аминокислоты. Подобно всем прочим биосинтетическим путям, ферментативный путь глюконеогенеза не идентичен соответствующему катаболическому пути, регулируется независимо от него и требует расхода химической энергии в форме АТР. Синтез глюкозы из пирувата происходит у позвоночных главным образом в печени и отчасти в почках. На этом биосинтетическом пути используются семь ферментов, участвующих в гликолизе они функционируют обратимо и присутствуют в большом избытке. Однако на гликолитическом пути, т. е. на пути вниз , имеются также три необратимые стадии, которые не могут использоваться в глюконеогенезе. В этих пунктах глюконеогенез идет в обход гликолитического пути, за счет других реакций, катализируемых другими ферментами. Первый обходный путь-это превращение пирувата в фосфоенолпируват через оксалоацетат второй-это дефосфорилирование фруктозо-1,6-дифосфата, катализируемое фруктозодифосфатазой, и, наконец, третий обходный путь-это дефосфорилирование глюкозо-6-фосфата, катализируемое глюкозо-6-фосфатазой. На каждую молекулу D-глюкозы, образующуюся из пирувата, расходуются концевые фосфатные группы четырех молекул АТР и двух молекул GTP. Регулируется глюконеогенез через две главные стадии 1) карбоксилирование пирувата, катализируемое пируваткарбоксилазой, которая активируется аллостерическим эффектором ацетил-СоА, и 2) дефосфорилирование фруктозо-1,6-дифосфата, катализируемое фруктозодифосфатазой, которая ингибируется АМР и активируется цитратом. По три атома углерода от каждо- [c.617]

    Процесс новообразования глюкозы в тканях организма из веществ неуглеводной природы называется глюконеогенезом. Глюкоза может синтезироваться из пировиноградной и молочной кислот, а также из ацетил-КоА, глицерина и аминокислот (рис. 66). Все они, кроме глицерина, проходят через стадию образования пировиноградной кислоты. Многие реакции глюконеогенеза представляют собой обращение соответствующих реакций, имеющих место в процессе гликолиза. Однако имеются дополнительные обходные реакции, например образование фосфоенолпировиноград-ной и пировиноградной кислот. [c.178]

    Запасы гликогена в мышцах, однако, невелики, и потому существует верхний предел того количества энергии, которое вырабатывается в ходе гликолиза, в условиях максимальной (например, при спринте) нагрузки. Более того, накопление молочной кислоты и связанное с этим снижение pH, а также повышение температуры, происходящее при очень высокой мышечной активности, снижают эффективность обмена в мыпщах. Так, в период восстановления после максимальной мышечной нагрузки атлет продолжает еще некоторое время тяжело дышать. Потребляемый при этом дополнительный кислород используется для окисления пирувата, лактата и других субстратов, а также регенерации АТР и фосфокреатина в мышцах. Одновременно лактат крови превращается в печени путем глюконеогенеза в поступающую в кровь глюкозу, которая попадает [c.757]

    На рис. 20-2 указаны регуляторные пункты глюконеогенеза и гликолиза. Первым таким пунктом в глюконеогенезе является реакция, катализируемая регуляторным ферментом пируваткарбоксилазой. Этот фермент практическч неактивен в отсутствие ацетил-СоА, который играет роль его положительного аллостерического модулятора. Поэтому биосинтез глюкозы из пирувата усиливается всякий раз, когда в клетке накапливается больше митохондриального ацетил-СоА чем ей в данный момент требуется в качестве топлива для цикла лимонной кислоты. Поскольку ацетил-СоА служит вместе с тем также отрицательным, или ингибирующим, модулятором пируват- [c.606]


    Синтез глюкозы из малых молекул-предшественников идет с особенно большой скоростью в период восстановления после мышечной нагрузки, требующей напряжения всех сил, например после бега на 100 м (дополнение 15-1). При такой интенсивной мышечной работе потребность скелетных мыпщ в АТР неизмеримо возрастает и циркуляторная система уже не успевает доставлять к ним глюкозу и кислород достаточно быстро для того, чтобы эту потребность удовлетворить. В этом случае в качестве резервного топлива используется мышечный гликоген, быстро расщепляющийся в процессе гликолиза с образованием лактата это сопровождается синтезом АТР, который и служит источником энергии для мышечного сокращения. Поскольку в таких условиях кислорода не хватает, лактат не может подвергнуться в мышцах дальнейшим превращениям и диффундирует в кровь, так что его содержание в крови может быть очень высоким. Закончивший стометровку спринтер вначале дышит еще очень тяжело, но постепенно его дыхание выравнивается и через некоторое время вновь становится нормальным. В течение этого периода восстановления возвращается к нормальному низкому уровню также и содержание лактата в крови. Значительная часть избытка кислорода, потребляемого в период восстановления (этот избыток служит мерой так называемой кислородной задолженности), расходуется на образование АТР, который необходим для того, чтобы из лактата, образовавшегося анаэробно во время спринтерского бега, могли быть ресинтезированы глюкоза крови и мышечный гликоген. За время восстановления (а для полного восстановления может потребоваться до 30 мин) лактат удаляется из крови печенью и превращается в глюкозу крови путем глюконеогенеза, который мы описали выше. Глюкоза крови возвращается в мышцы, и здесь из нее образуется гликоген (рис. 20-5). Поскольку на образова- [c.608]

    Д. Влияние на метаболизм липидов. Липогенное действие инсулина уже рассматривалось в разделе, посвященном его влиянию на утилизацию глюкозы. Кроме того, инсулин является мощным ингибитором липолиза в печени и жировой ткани, оказывая, таким образом, непрямое анаболическое действие. Частично это может быть следствием способности инсулина снижать содержание сАМР (уровень которого в тканях повышается под действием липолити-ческих гормонов глюкагона и адреналина), а также способности инсулина ингибировать активность гормон-чувствительной липазы. В основе такого ингибирования лежит, по-видимому, активация фосфатазы, которая дефосфорилирует и тем самым инактивирует липазу или сАМР-зависимую протеинкиназу. В результате инсулин снижает содержание жирных кислот в крови. Это в свою очередь вносит вклад в действие инсулина на углеводный обмен, поскольку жирные кислоты подавляют гликолиз на нескольких этапах и стимулируют глюконеогенез. Данный пример показывает, что при обсуждении регуляции метаболизма нельзя учитывать действие лишь какого-либо одного гормона или метаболита. Регуляция—сложный процесс, в котором превращения по определенному метаболическому пути пред- [c.257]

    Обмен углеводов. Инсулин стимулирует гликолиз, повышая активность ключевых ферментов глюкокиназы, фосфофруктокиназы и пируваткиназы. В печени он снижает активность глюкозо-6-фос-фатазы. Эти процессы и стимуляция трансмембранного транспорта глюкозы обеспечивают поток глюкозы из крови в клетки. Инсулин стимулирует синтез гликогена за счет активации гликогенсинтазы (дефосфорилирование фермента в форму / — активную) этот процесс сопряжен с активацией фосфодиэстеразы и уменьшением внутриклеточной концентрации цАМФ, а также активацией фосфатазы гликогенсинтетазы. Действие инсулина на транспорт глюкозы, гликолиз, гликогеногенез продолжается секунды-минуты и включает фосфорилирование-дефосфорилирование ферментов. Длительное действие на уровень глюкозы в плазме зависит от ингибирования инсулином глюконеогенеза в печени гормон тормозит синтез ключевого фермента — фосфоенолпируваткарбоксикиназы (путем селективного контроля транскрипции гена, кодирующего мРНК этого фермента). Инсулин — единственный гормон, снижающий содержание глюкозы в крови. [c.391]

    Жирные кислоты окисляются по механизму (3-окисления, в результа1е которого от жирной кислоты последовательно отщепляются двууглеродные ацетильные остатки в форме ацетил-СоА. Процесс (3-окисления жирных кислот протекает в глиоксисомах, где, кроме того, локализованы ферменты глиоксилатного цикла. Ацетил-СоА включается в реакции глиоксилатного цикла, конечный продукт которого — сукцинат (см. 4.2.4) — покидает глиоксисому и в митохондриях участвует в цикле Кребса. Синтезированный в ЦТК малат в цитоплазме при участии малатдегидрогеназы превращается в оксалоацетат, который с помощью ФЕП-карбоксикиназы дает фосфоенолпируват (см. 4.2.2). Фосфоглицериновый альдегид и ФЕП служат исходным материалом для синтеза глюкозы (а также фруктозы и сахарозы) в обращенных реакциях гликолиза (рис. 4.11). Процесс образования глюкозы из неуглеводных предшественников получил название глюконеогенеза. Экспериментально показано, что по мере расходования жиров в прорастающих [c.164]

    Адреналин стимулирует также секрецию АКТГ т передней доли гипофиза. Под действием АК.ТГ кора надпочечников начинает продуцировать глюкокортикоиды, Эти стероидные гормоны действуют как на, мышечную ткань, так и на печень. В мышцах они вызывают высвобождение лактата, трикарбоковых кислот и аминокислот. В печени индуцируют образование глюко-зо-6-фосфатазы и. ферментов глюконеогенеза, т. е. активируют реакции синтеза глюкозы из лактата и пирувата (рис. 89). Кроме карбоновых кислот, образующихся в результате гликолиза и цикла Кребса, в глюкоиеоге-нез вступают также аминокислоты, глицерин и другие метаболиты. Превращение этих веществ в глюкозу также стимулируется глюкокортикоидами, так как эти гормоны индуцируют образование в печени целого ряда аминотрансфераз. [c.243]


Смотреть страницы где упоминается термин также Гликолиз, Глюконеогенез a Глюкоза: [c.482]    [c.602]    [c.217]    [c.95]    [c.291]    [c.294]   
Основы биохимии Т 1,2,3 (1985) -- [ c.69 ]




ПОИСК





Смотрите так же термины и статьи:

Гликолиз

Гликолиз глюкозы



© 2025 chem21.info Реклама на сайте