Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

также Кофакторы

    Многие двухвалентные металлы (Mg , Мп , Са ), как будет показано далее, также выполняют роль кофакторов, хотя они не относятся ни к коферментам, ни к простетическим группам. Известны примеры, когда ионы металлов прочно связаны с белковой молекулой, выполняя функции [c.121]

    Ферментативный анаэробный распад углеводов исследуют при инкубации тканевого гомогената или экстракта с субстратами гликолиза (гликогеном, глюкозой, а также с промежуточными продуктами гликолиза). О процессе судят по приросту конечного продукта анаэробного превращения углеводов — лактата или убыли субстратов. Отдельные этапы изучают при добавлении в инкубационную среду ингибиторов ферментов или удалении диализом кофакторов и коферментов, необходимых для определенных реакций процесса анаэробного превращения углеводов. [c.49]


    Самый простой способ регуляции любого метаболического пути может быть основан на доступности субстрата, а также кофактора. Уменьшение концентрации субстрата приводит к снижению скорости потока веществ через данный метаболический путь. С другой стороны, увеличение концентрации субстрата будет стимулировать метаболический путь. Необходимо подчеркнуть, что, каковы бы ни были другие факторы регуляции ферментативной активности, доступность субстрата надо рассматривать как потенциальный механизм регуляции любого метаболического пути. В селекции продуцентов различных метаболитов генетические манипуляции, направленные на увеличение концентрации предшественников, нередко являются эффективным средством повышения выхода целевого продукта. [c.10]

    В клинических лабораториях применяют готовые наборы реактивов, в состав которых входят ферменты, составляющие буфер соли, а также кофакторы. При использовании иммобилизованных ферментов для определения концентрации компонента крови достаточно нанести образец сыворотки на индикаторную пластинку и сравнить интенсивность окраски с эталоном. [c.56]

    В формировании активного центра принимают участие также молекулы воды, входящие в гидратационные слои, а в ряде случаев ионы металлов, связанные с белком, и органические- кофакторы. Определенную жесткость такой конструкции придают а-спирали, р-структуры и дисульфидные мостики. [c.19]

    При образовании ФСК малая молекула субстрата стехиомет-рически связывается с большой молекулой фермента. Очевидно, субстрат непосредственно взаимодействует с определенным малым участком молекулы фермента — с ее активным центром. Природа активного центра, т. е. совокупность и расположение аминокислотных остатков, а также кофакторов (см. стр. 94), входящих в его состав, устанавливается посредством химических и физических исследований. Изменения активности, возникающие в результате химической модификации белка, позволяют выявить функциональные группы активного центра. Сведения [c.374]

    Важнейшим достижением в производстве биосенсоров является использование электропроводящих мембран, например поли-пиррольных, содержащих также фермент, кофактор и медиатор. Такие мембраны изготавливают при проведении реакции полимеризации непосредственно на поверхности электрода. [c.504]

    При действии D-a-лизин-мутазы (табл. 8-6) атом водорода перемещается от С-5 к С-6 [185]. Для этой реакции необходимы два белка, а также пиридоксальфосфат, который, по-видимому, непосредственно участвует в переносе аминогруппы. Родственная этому ферменту L- -лизин-мутаза нуждается в пирувате как в кофакторе [163]. [c.296]


    Субстраты — малые молекулы или малые группы больших молекул. Напротив, фермент макромолекулярен. Следовательно, субстрат непосредственно взаимодействует с определенным малым участком молекулы фермента — с ее активпы.и центром. Природа активного центра, т. е. совокупность и расположение аминокислотных остатков, а также кофакторов (см. с. 48), входящих в его состав, установлена для ряда ферментов. Мы уже упоминали о фермент-субстратном узнавании (с. 58). Изменения активности, возникающие в результате химической модификации белка, позволяют выявить функциональные группы активного центра. Сведения о его структуре дают оптические и спектраль- ные методы, а также рентгеноструктурный анализ комплексов фермента с конкурентными ингибиторами, строение которых близко к строению субстратов. [c.182]

    Хроматографию по сродству обычно применяют для очистки одногр компонента системы, состоящей из двух или более взаимодействующих веществ. Основной принцип заключается в прикреплении одного компонента к нерастворимой пористой матрице (иммобилизация). Связанный компонент (лиганд) может быть использован для специфической сорбции другого компонента в условиях, благоприятных для их взаимодействия и образования комплекса. Элюция сорбированного вещества может включать любую процедуру, ведущую к диссоциации. комплекса. Для очистки ферментов чаще всего используют конкурентные ингибиторы, связанные с носителями. В качестве лигандов могут быть взяты также кофакторы, субстраты ли фрагменты субстратов. В иммунологии хроматографию по сродству широко применяют для очистки антител на связанных антигенах и для выделения антигенов на связанных антителах. Метод с успехом используют для выделения белков-рецепторов, связывающих витамины и гормоны. ХрО матографию по сродству примедяют также для концентрирования разбавленных белковух растворов, удаления денатурированных или модифицированных ферментов из активных препара- [c.215]

    Одна группа монооксигеназ, для которых точно известно, что ион металла не нужен, требует присутствия в качестве кофактора флавина. Отсутствие потребности в ионах металла означает также, что некоторые стадии реакции с кислородом могут протекать по свободнорадикальному механизму. Однако, поскольку радикалы субстрата очень неустойчивы, то кажется более вероятным, что кислород реагирует с восстановленной формой флавина с образованием промежуточного соединения, которое затем реагирует с субстратом по ионному механизму. В этом случае спины свободных электронов кислорода сохраняются. Цикл оксигенации для флавинмонооксигеназ приведен на рис. 7.6. [c.418]

    АЛКОГОЛЬДЕГИДРОГЕНАЗЫ, ферменты класса оксидо-редуктаз. Катализируют окисл. спиртов до альдегидов или кетонов. Выделены два осн. типа А. Ферменты одного из них содержат кофактор НАД и катализируют окисл. пер-< вичных и вторичных спиртов или полуацеталей- Ферменты этого тииа животного происхождения (но не иа дрожжей) окисляют также циклич. вторичные спирты. А. другого типа содержат кофактор НАДФ нек-рые ферменты этой группы окисляют только первичные или вторичные спирты. [c.24]

    По своему существу аффинная хроматография — это особый тип адсорбционной хроматографии. В отличие от того, что было описано в гл. 6, адсорбция здесь осуществляется за счет биоспецифп-ческого взаимодействия между молекулами, закрепленными на матрице, т. е. связанными в неподвижной фазе, и комплементарными к ним молекулами, подлежащими очистке или фракционированию, поступающими, а затем элюируемыми с подвижной фазой. Биоспеци-фическое взаимодействие отличается исключительной избирательностью, а зачастую и очень высокой степенью сродства между партнерами. Оно лежит в основе множества строго детерминированных процессов, протекающих в организме. В качестве примеров можно назвать взаимодействия между ферментами и их субстратами, кофакторами или ингибиторами, между гормонами и их рецепторами, между антигенами и специфическими для них антителами, между нуклеиновыми кислотами и специфическими белками, связывающимися с ними в процессе осуществления своих функций (полимераза.мп, нуклеазами, гистонами, регуляторными белками), а также между самими нуклеиновыми кислотами-матрицами и продуктами их транскрипции. Наконец, многие малые молекулы (витамины, жирные кнслоты и др.) специфически связываются со специальными транспортными белками. [c.339]

    Марганец также обнаружен в перок-сидазах, в супероксид дисмутазах, бактериальных каталазах и оксигеназах. Три степени окисления (+2, +3, +4) зафиксированы для Мп-кофакторов, позволяя им участвовать во многих redox и кислотно-катализируемых по Льюису реакциях. [c.364]

    Состав и соотношение форм И. (спектр И.) изменяется в зависимости от их локализации в органах и тканях организмов одного вида и даже в разных субклеточных органеллах одной и той же клетки. На спектр И. оказывает влияние разное физиол. состояние организма и патологич. процессы, происходящие в нем. Поскольку И. различаются по свои.м св-вам (оптимуму pH, активации ионами, по сродству к субстратам, ингибиторам, активаторам, кофакторам), то характер их распределения отражает регуляторные механизмы, контролирующие метаболизм. Так, напр., лактатдегидрогеназа представлена в организме человека и животных пятью формами, каждая из к-рых представляет собой тетрамер, состоящий из субъединиц двух типов (а и Р) в разных соотношениях. В сердце и печени представлена в осн. форма 04, а в мышцах-Р . Первая ингибируется избытком пировиноградной к-ты и поэтому преобладает в органах с аэробным типом метаболизма, вторая не ингибируется избытком этой к-ты и преобладает в мышцах с высоким урювнем гликолиза. О важной роли И. в тонкой регуляции метаболич. процессов свидетельствует также изменение их спектра под влиянием разл. воздействий и физиол. состояний (охлаждение, гипоксия, денервация и др.). [c.202]


    Существуют также многие NAD-дегидрогеназы, для которых ферментативная реакция протекает в обратном направлении, приводя, таким образом, к образованию NAD . В случае биосенсора сигнал получали бы за счет восстановления NAD" ". Восстановление NAD+ на электроде имеет тенденцию к образованию (путем радикальной полимеризации) димеров, а не восстановленного кофактора NADH. Эти димеры адсорбируются на поверхности электрода, что делает NAD+ вепригодным для исиользования в качестве компонента биосенсора. [c.540]

    В 1966г. Данатан постулировал, что разрываемая PLP-зaви имым ферментом связь в аминокислоте-субстрате должна быть расположена в плоскости, перпендикулярной плоскости я-системы субстрат-кофер-ментного имина (рис. 8-8). Такая ориентация снижает до минимального значения энергию переходного состояния, поскольку она допускает максимально возможное а—я-перекрывание разрываемой связи и сопряженной я-системы имина кофактора. При этом, кроме того, достигается геометрия, наиболее близкая к формулируемому планарному хиноидному производному, что сводит к минимуму молекулярные перемещения при подходе к переходному состоянию [47]. На рис. 8-8 показаны три типа ориентации аминокислоты, в которых а-водород, карбоксильная группа и боковая цепь соответственно находятся в положении, оптимальном для расщепления связи. Для каждого представленного типа ориентации поворот аминокислоты на 180° приводит к другой конформации, которая также пригодна для расщепления указанной связи. [c.225]

    Следует отметить, что интерферон индуцирует также образование олигоизоаденилсинтетазы Е, требующей для своей активности двуцепочечной РНК и синтезирующей кофактор предсуществующей РНКазы F —(2 —5 )олигоаденилат в результате РНКаза F начинает разрушать мРНК. [c.263]

    Обычно активные центры ферментов включают части всех структурных доменов глобулярного белка. Активные центры всех известных мультидоменных белков (табл. 5.2) расположены между доменами (рис. 4.1). Эти домены определяются не только как глобулярные области, разделенные полостью активного центра, но имеют и другое характерное для доменов свойство — они связаны между собой только одной пептидной цепью (табл. 5.2). Субстраты и кофакторы обычно присоединяются к разным доменам. В случае NAD связывающий кофактор домен всегда имеет ту же самую с довольно развитой открытой поверхностью топологию н NAD присоединяется в эквивалентных положениях (рис. 5.17, б), что является результатом эволюции [254, 255]. Кроме того, этот домен обнаружен на N-конце трех дегидрогеназ и одной киназы [230— 233, 235], а также на С-концевой половине четвертой дегидрогеназы [234] и в средней части фосфорилазы [236], что указывает на возможность дупликации соответствующего гена и его переноса в другое место генома. Все эти факты, включение в активный центр частей различных доменов, наличие кофакторепецифичных доменов и возможность переноса домена дают основание предположить, что ферменты конструируются с использованием модульной системы кофактор и субстратспецифичные домены, необходимые для обеспечения заданной функции, отбираются и объединяются в одной цепи глобулярного белка [124, 256]. [c.117]

    Макеты можно эффгктивно использовать для представления стереохимических данных. Помимо общей информации, т. е. обозначений атомов и их координат, при описании полной структуры белка обычно приводят целый ряд важных дополнительных сведений, касающихся водородных связей и других видов невалентных взаимодействий между атомными группами скелета и боковыми цепями, а также данных о любом взаимодействии полипептидной цепи (включая ковалентное) с простетическими группами, кофакторами, субстратами, металлами и другими лигандами, молекулами воды и т. д. Обычно эти сведения объединены в дпинный перечень, из которого по мере необходимости извлекается нужная информация. Значительно лучшей формой записи в некоторых случаях могут, однако. [c.170]

    Реакция легкообратима, протекает в присутствии ионов Mg . Кофактором фермента является также 2,3-бисфосфоглицериновая кислота аналогично тому, как в фосфоглюкомутазной реакции роль кофактора выполняет глюкозо-1,6-бисфосфат  [c.331]

    Внемитохондриальная система биосинтеза de novo жирных кислот (ли-ногенез). Эта система находится в растворимой (цитозольной) фракции клеток многих органов, в частности печени, почек, мозга, легких, молочной железы, а также в жировой ткани. Биосинтез жирных кислот протекает с участием НАДФН, АТФ, Мп и НСО, (в качестве источника СО,) субстратом является ацетил-КоА, конечным продуктом—пальмитиновая кислота. Потребности в кофакторах процессов биосинтеза и 3-окисленпя жирных кислот значительно различаются. [c.382]

    Следует отметить, что фермент, катализирующий окислительное декарбоксилирование указанных а-кетокислот, высокоспецифичен (по аналогии с пируватдегидрогеназным и а-кетоглутаратдегидрогеназным комплексами) и также нуждается в присутствии всех пяти кофакторов (см. главу 10). Известно наследственное заболевание болезнь кленового сиропа , при которой нарушено декарбоксилирование указанных а-кетокислот (вследствие синтеза дефектного дегидрогеназного комплекса), что приводит не только к накоплению в крови аминокислот и а-кетокислот, но и к их экскреции с мочой, издающей запах кленового сиропа. Болезнь встречается редко, проявляется обычно в раннем детском возрасте и приводит к нарушению функции мозга и летальному исходу, если не ограничить или полностью не исключить поступление с пищей лейцина, изолейцина и валина. [c.459]


Смотреть страницы где упоминается термин также Кофакторы: [c.276]    [c.433]    [c.47]    [c.297]    [c.177]    [c.243]    [c.248]    [c.353]    [c.589]    [c.43]    [c.264]    [c.410]    [c.624]    [c.551]    [c.599]    [c.270]    [c.277]    [c.217]    [c.260]    [c.177]    [c.652]    [c.679]    [c.709]    [c.142]    [c.96]    [c.121]    [c.121]   
Основы биохимии Т 1,2,3 (1985) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте