Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сечение захвата электронов переходов

    Сил, либо же при образовании ионной пары, которая стабилизируется переходом электрона с одной молекулы на другую. Если образование комплекса сопряжено с преодолением потенциального барьера, то расчет образования составной системы требует детального знания той части поверхности потенциальной энергии, которая лежит на пути от исходных молекул к комплексу. Одномерный профиль пути реакции такого типа показан на рис. 25, б. Вершине потенциального барьера сопоставляется переходный комплекс (активированное состояние), введение которого иногда облегчает расчет сечения захвата. Потенциальной яме сопоставляется долгоживущий комплекс, в котором происходит перераспределение энергии между различными степенями свободы. Это перераспределение может быть описано движением изображающей точки только внутри многомерной потенциальной ямы, поэтому одномерная схема реакции является крайне условной. [c.272]


    Если электроны вместо непосредственного безызлучательного перехода из ловушек в излучающее состояние предварительно переводятся в зону проводимости, то затухание люминесценции будет происходить преимущественно по другому закону. Предположим, что фосфор облучался достаточно долго, так что все ловушки заполнены. Во время фосфоресценции электроны переходят из ловушек в зону проводимости со скоростью kn. Они могут быть захвачены или одним из п свободных центров люминесценции, или одной из Пд — П незанятых ловушек. Предполагая, что поперечные сечения захвата для центров и ловушек равны, получаем дифференциальное уравнение [c.100]

    Возможно, что в равновесии находятся только уровни но не О . Этого следует ожидать, если поверхностная концентрация Л 1 свободных уровней 0 превышает концентрацию физически адсорбированных атомов, N2. Рассмотрим простую модель, в которой свободные уровни О соответствуют физически адсорбированным атомам, а свободные уровни — хемосорбированным ионам 0 . Пусть сечения захвата электронов обоими типами кислорода одинаковы. Тогда отношение скоростей заполнения уровней и О" будет равно N /N2 и, как бы медленно ни протекала хемоеорбция, скорость перехода электронов между ионами и объемом будет превышать скорость хемосорбции в N /N2 раз. Следовательно, число ионов несмотря на хемосорбцию, будет равновесным, а образование ионов О" по существу прекратится .  [c.316]

    БОР (от позднелат. borax-бура лат. Borum) В, хим. элемент III гр. периодич. системы, ат. н. 5, ат. м. 10,811. Прир. Б. состоит из двух стабильных изотопов- В (19,57%) и В i80,43%). Поперечное сечение захвата тепловых нейтронов В 3-10 м "В 4-10 м1 Конфигурация внеш. электронной оболочки 2s 2p степень окисления + 3, редко + 2 энергия ионизации при последоват. переходе от B к В соотв. 8,29811, 25,156, 37,92, 259,30 и 340,13 эВ атомный радиус 0,097 нм, ковалентный 0,088 нм, металлический 0,091 нм, ионный В 0,025 нм (координац. число 4). [c.299]

    ВАНАДИЕВЫЕ БРОНЗЫ, см. Бронзы оксидные. ВАНАДИЙ (от имени др.-сканд. богини красоты Ванадис, Vanadis лат. Vanadium) V, хим. элемент V гр. периодич. системы, ат. н. 23, ат. м. 50,9415. Прир. В. состоит из стабильного изотопа (99,76%) и слабо радиоактивного (Г, 2 10 лет). Поперечное сечение захвата тепловых нейтронов для прир. смеси изотопов 4,98 10 м . Конфигурация внеш. электронной оболочки 3d 4s степень окисления от -1-2 до -1-5 энергия (эВ) ионизации при последоват. переходе от V к соотв. 6,74, 14,65, 29,31, 48,4, 65,2 электроотрицательность по Полингу 1,6 атомный радиус 0,134 нм, ионные радиусы (в скобках-координац. числа В.) V 0,093 нм (6), 0,078 нм (6), У 0,067 (5), 0,072 (6) и 0,086 нм (8), 0,050 (4), 0,060 (5) и 0,068 нм (6). [c.348]


    ГЕРМАНИЙ (от лат. Oermania-Германия, в честь родины К. А. Винклера лат. Germanium), Ge, хим. элемент IV гр. периодич. системы, ат. и. 32, ат. м. 72,59. Прир. Г. состоит из четырех стабильных изотопов с мае. ч. 70 (20,52%), 72 (27,43%), 73 (7,76%), 74 (36,54%) и 76 (7,76%). Поперечное сечение захвата тепловых нейтронов 2,35-10" м . Конфигурация внеш. электронной оболочки 4i 4p степень окисления -I- 4 (наиб, устойчива), +3, +2 и + энергия ионизации при последоват. переходе от Ge к Ge соотв. 7,900, 15,9348, 34,22, 45,70 эВ электроотрицательность по Полингу 1,8 атомный радиус 0,139 нм, ионный радиус (в скобках указаны координац. числа) для Ge 0,087 нм (6 для Ge - а053 нм(4), 0,067 нм(б). [c.530]

    Прир К состоит из восьми стабильных изотопов >" d (1,22%), > d (0,88%), d (12,39%), d (12,75%), d (24,07%) - d (12,26%), d (28,85%) и d (7,58%) Поперечное сечение захвата тепловых нейтронов для прир смеси 29 10 м , для d 25 10" м Конфигурация внеш электронной оболочки 4i/ 5i , степень окисления + 2, редко + 1, энергии ионизации при последоват переходе от d к d соотв 8,9939, 16,9085 и 37,48 эВ, сродство к электрону — 0,27 эВ, электроотрицательиость по Попинг 1,7, атомный радиус 0,146 нм, ионный радиус (в скобках казано координац число) d 0,092 нм (4), 0,101 нм (5). 0.109 нм (6), 0,117 нм (7), 0,145 нм (12) [c.280]

    КРЕМНИЙ (Sili ium) Si, химический элемент IV ф. периодич. системы, ат. н. 14, ат. м. 28,0855. Состоит из трех стабильных изотопов Si (92,27%), Si (4,68%) и Si (3,05%). Поперечное сечение захвата тепловых нейтронов 1,3 10 м . Конфигурация внещ. электронной оболочки 3i 3p степень окисления +4 (наиб, устойчива), +3, +2 и + 1 энергии ионизации при последоват. переходе от Si к Si соотв. 8,1517, 16,342, 33,46 и 45,13 эН сродство к электрону 1,22 эВ злектроотрицательность по Полингу 1,8 атомный радиус 0,133, ионный радиус Si (в скобках указаны координац. числа) 0,040 нм (4), 0,054 нм (6), ковалентный-0,1175 нм. [c.508]

    ЛАНТАН (от греч. lanthano-скрываюсь лат. Lanthanum) La, хим. элемент III гр. периодич. системы, ат. н. 57, ат. м. 138,9055 относится к редкоземельным элементам. Прир. Л. состоит из двух изотопов La (99,911%) и радиоактивного La (0,089% 2 -10 лет). Поперечное сечение захвата тепловых нейтронов для прир. смеси изотопов 9-10" м . Конфигурация внеш. электронной оболочки 5 6i степень окисления -I- 3 энергия ионизации при последоват. переходе от La к La соотв. 5,5770, 11,06 и 19,176 эВ атомный радиус 0,187 нм, ионные радиусы (в скобках указаны координац. числа) La 0,117 нм (6), 0,124 нм (7), 0,130 нм (8), 0,136 нм (9), 0,141 нм (10), 0,150 нм (12). [c.577]

    МЫШЬЯК (возможно, от слова мышь в Древней Руси возникновение такого назв. могло быть связано с применением соединений М. для истребления мышей и крыс лат. Arseni mn, от греч. arsen-сильный, мощный) As, хим. элемент V гр. периодич. системы, ат.н. 33, ат.м. 74,9216. В природе один стабильный изотоп с мас.ч. 75, Поперечное сечение захвата тепловых нейтронов 4,2-10 м . Конфигурация внеш. электронной оболочки 4s 4p степени окнсления — 3, -1-3 и -1-5 энергии ионизации при последоват. переходе от As к As соотв. равны 9,815, 18,62, 28,34, 50,1, [c.156]

    НИОБИЙ (от имени Ниобы-дочери Тантала в др.-греч. мифологии лат. №оЫцт) КЬ, хим. элемент V гр. периодич системы, ат. н. 41, ат. м. 92,9064. В природе один стабильный изотоп КЬ. Поперечное сечение захвата тепловых нейтронов 1,15-10 м . Конфигурация внеш. электродных оболочек атома 45 4р 4степени окисления -Ь 5, ре е -Ь4, -Ь 3, -ь2 и -Н 1 энергии ионизации при последоват переходе от КЬ к КЪ равны соотв. 6,882, 14,320, 25,05, 38,3, 50,6, 103 и 124,6 эВ сродство к электрону 1,13 эВ работа выхода электрона 4,01 эВ электроотрицательность по Полингу 1,6 атомный радиус 0,145 им, ионные радиусы (в скобках указано координац. число) КЬ " 0,085 нм (6), КЬ + 0,086 нм (6), КЪ - 0,082 нм (6), 0,092 нм (8), КЬ= + 0,062 нм (4), 0,078 нм (б), 0,083 нм (7), 0,088 нм (8). [c.249]

    САМАРИЙ (обнаружен в минерале самарските, названном в честь рус. геолога В. Б. Самарского-Быховца лат. Samarium) Sm, хим. элемент 111 гр. периодич. системы относится к редкоземельным элементам (цериевая подгруппа лантаноидов) ат.н. 62, ат.м. 150,36. Природный С, состоит из стабильных изотопов Sm (3,09%), Sm (11Д7%), Sm (13,82%), Sm (7,47%). Sm (26,63%), Sm (22,53%) и радиоактивного изотопа Sm (15,07%, Т, 2 1,3-10 лет, а-излучатель). Поперечное сечение захвата тепловых нейтронов для прир. смеси изотопов 5,6-10 м . Конфигурация внеш. электронных оболочек атома 4/ 5i 5р степени окисления -Ь 3, -Ь 2 и, вероятно, + 4 энергии ионизации при последоват. переходе от Sm к Sm соотв. 5,63, 11,07, 23,43, 41,37, 62,7 эВ электроотрицательность по Полингу 1,0-1,2 атомный радиус 0,181 нм, ионные радиусы (в скобках даны координац. числа) Sm 0,136 нм (7), 0,141 нм (8), 0,146 нм (9), Sm 0,110 нм (6), 0,116 нм (7), 0,122 нм (8), 0,127 нм (9), 0,138 нм (12). [c.289]

    СЕЛЁН (от греч. selene-Луна лат. Selenium), Se, хим. элемент VI гр. периодич. системы, относится к халькогенам, ат. н. 34, ат. м. 78,96. Природный С. состоит из шести изотопов Se(0,87%), Se(9,02%), Se(7,58%), Se(23,52%), Se(49,82%) и "Se(9,I9%). Поперечное сечение захвата тепловых нейтронов для прир. смеси 2,3 Ю " м". Конфигурация внещ. электронной оболочки атома 4р степени окисления —2, 4-4 и -1-6, редко -1-2 энергии ионизации при последоват. переходе от Se к Se -" равны 9,752, 21,2, 32,0, 42,9, 68,3, 81,7 эВ сродство к электрону 2,020 эВ электроотрицательность по Полингу 2,40 йтомный радиус 0,160 нм, ионные радиусы (нм, в скобках даны координац. числа) Se" 0,184 (6), Se -" 0,064 (6), Se -" 0,04 (4), 0,056 (6). [c.311]


    СЁРА (8и1Гш-) S, хим. элемент VI гр. периодич. системы, ат. н. 16, ат. м. 32,066 относится к хальквгенам. Природная С. состоит из четырех изотопов 8(95,084%), 3(0,74%), 8(4,16%), S(0,016%). Поперечное сечение захвата тепловых нейтронов для прир. смеси изотопов 0,52-10 м . Конфигурация внеш. электронной оболочки атома ip наиб, характерные степени окисления — 2, + 4, + 6 энергии ионизации при последоват. переходе от S° к равны соотв. 10,3601, 23,35, 34,8, 47,29, 72,5, 88,0 эВ сродство к электрону 2,0772 эВ электроотрицательность по Полингу 2,58 атомный радиус 0,104 им, ионные радиусы (в скобках даны координац. числа), нм 0,170 (6), 0,051-(6), 0,026 (4). [c.319]

    СКАНДИЙ (S andium) S , хим. элемент III гр. периодич. системы, ат. н. 21, ат. м. 44,9559 относится к редкоземельным э цементам. Известен один прир. стабильный изотоп S . Поперечное сечение захвата тепловых нейтронов 1,66-10м . Конфигурация внеш. электронных оболочек атома Зй 4s устойчивая степень окисления + 3, редко -(- 1 -Ь 2 энергии ионизацйи при последоват. переходе от S к S " равны соотв. 6,5616, 12,80 и 24,76 эВ сродство к электрону — 0,73 эВ электроотрицательность по Полингу 1,3 атомный радиус 0,164 нм, ионный радиус S 0,089 нм (коорд1шац. число 6), 0,101 нм (8). [c.359]

    СУРЬМА (от тур. siirme лат. stibium) Sb, хим. элемент V гр. периодич. системы, ат. н. 51, ат. м. 121,75. Природная С.-смесь двух изотопов Sb (57,25%) и Sb (42,75%). Поперечное сечение захвата тепловых нейтронов 5,7 х X 10" м . Конфш7рация внеш. электронной оболочки атома 5i 5p степени окисления -ьЗ и 4-5, редко —3 энергии ионизации при последоват. переходе от Sl к Sb 8,64, 16,5, 25,3, 44,1, 60 эВ сродство к электрону 0,94 эВ электроотрицательность по Полингу 1,9 атомньш радиус 0,161 нм, ионные радиусы, нм (в скобках указаны координац. числа) Sb - 0,090 (4), 0,94 (5), 0,090 (6), Sb 0,074 (6). [c.475]

    ТАЛЛИЙ (от греч. thallos-зеленая ветка лат. ThaUimn) Л, хнм. элемент Ш гр. периодич. системы, ат. н. 81, ат. м. 204 383. Природный Т.-смесь двух изотопов ° Т1 (29,5%) и (70,5%). Радиоактивные изотопы с мае. ч. от 206 до 210 и Ti,2 от 1,32 до 4,79 мин - члены природных радиоактивных рядов. Поперечное сечение захвата тепловых нейтронов прир. смеси изотопов 3,4-10 м . Конфигурация внеш. электронной оболочки атома 6s 6p степени окисления -Ь 1 и -ьЗ энергии ионизации при переходе от Т1° к ТР 6,1080, 20,4284, 29,8 эВ работа выхода электрона 3,70 эВ электроотрицательность по Полингу 1,8 атомный радиус 0,171 нм, ионные радиусы, н.м (в скобках указаны координац. числа) Т1 + 0,164 (6), 0,173 (8), 0,184 (12), Т1 + 0,089 (4), 0,103 (6), 0,112 (8). [c.490]

    Се (11,08%). Поперечное сечение захвата тепловых нейтронов 0,6 10 м . Конфигурация внеш. электронных оболочек атома 4/ 5Лр б степени окисления +3, реже +4 энергия ионизации при последоват. переходе от Се к Се 5,47, 10,85, 20,198 и 36,758 эВ электроотрицательность по Полингу 1,12 атомный радиус 0,183 нм, ионные радиусы (в скобках даны координац. числа) Се 0,115 (б), 0,121 (7), 0,128 (8), 0,134 (9), 0,139 (10), 0,148 нм (12), Се 0,101 (6), 0,111 (8), 0,121 (10), 0,128 (12) нм. [c.351]

    ЦИРКОНИЙ (лат. Zir onium) Zr, хим. элемент IV ф. периодич. системы ат. н. 40, ат. м. 91,224. Прир. Ц. состоит из 5 стабильных нуклвдов Zr (51,46%), Zr (11,23%), Zr (17,11%), (17,40%) и Zr (2,80%). Поперечное сечение захвата тепловых нейтронов д ля прир. смеси 1,8-1д ля Zr 1,010" м . Конфи1урация внеш. электронных оболочек атома 4(Р5 степень окисления +4, значительно реже +3, +2 и +1 энергия ионизации при последоват. переходе от Zi" к Zi равна соотв. 6,837, 13,13, 22,98 и 34,92 эВ электроотрицательность по Полингу 1,4 ионный радиус Zr (в скобках даны координац. числа) 0,073 нм (4), 0,080 нм (5), 0,086 нм (б), 0,092 нм (7), 0,098 нм (8) или 0,103 нм (9). [c.384]

    С температурный коэфф. линейного расщирения (т-ра 25— 100° С) 10,3-13,1. 10- град коэфф. теплопроводности (т-ра 50° С) 0,45 кал1см сек град, теплоемкость 0,43 кал г град электрическое сопротивление (температура 20° С) 3,6 мком. см. Температурный коэфф. электрического сопротивления (т-ра 20° С) 62,8 10- град К Т-ра перехода в сверхпроводящее состояние 0,064 К. Б.— диамагне-тик, его удельная магнитная восприимчивость (т-ра 20° С) порядка 10 . Работа выхода электронов 3,920 эв. Потенциал ионизации 9,320 и 18,210 вв. Поперечное сечение захвата тепловых нейтронов 0,0090 барн на атом. Эти св-ва зависят от чистоты и структуры металла. Мех. св-ва Б. обусловливаются чистотой металла, размерами зерен, степенью анизотропности (см. Анизотропия), скоростью испытания. Модуль продольной упругости Б. 3 10 кгс1мм , предел прочности на растяжение 20—55 кгсЫм , удлинение 0,2—2%. Обработка давлением улучшает св-ва металла. Предел прочности Б. в направлении вытяжки до 40—80 кгс/мм . [c.133]

    При колебательной релаксации возможно также возникновение свободных электронов в твердом теле. Электронное возбуждение возможно либо на первой стадии — при возникновении локальных колебаний, либо на второй стадии — при исчезновении колебательной релаксации молекулы на поверхности. Люминесценция после адсорбции на окислах, открытая Рогинским и Руфовым [36], вызвана ионизацией локальных энергетических уровней, т. е. переходом электрона в зону проводимости с последующей рекомбинацией. Наиболее вероятным механизмом передачи энергии является резонансная. Образовавшиеся при адсорбции свободные электроны могут захватываться различными ловушками, причем безызлучательные переходы являются преобладающими (достаточно напомнить, что квантовый выход адсорболюми-несценции составляет всего 10" ). При этом образовавшиеся свободные электроны должны захватываться вблизи поверхности или на самой поверхности. Как показано Владимировой, Жабровой и Гезаловым [26, 27], сечения захвата свободных носителей тока адсорбционными дефектами значительно выше, чем биографическими дефектами и внедренными примесями. [c.129]

    При выводе уравнения (2) введено условие, что электрон могут потерять только те ионы Рп в, которые не стоят рядом с поверхностной вакансией. Но такой ион может оказаться рядом с вакансией в следующем за поверхностью более глубоком слое. Если учесть эти вакансии, коэффициент при а в уравнении (2) должен быть >2, что противоречит экспериментальным данным По-видимому, практически все анионные вакансии в объеме кристалла, имеющие эффективный положительный заряд, являются центрами локализации (захвата) электронов, которые остаются после удаления из кристалла атомов фтора. Локализованный на ближайшем к вакансии ионе Со " электрон должен иметь сильно вытянутую в сторону вакансии орбиту. Таким образом, происходит компенсация эффективного заряда вакансии. Поверхностная вакансия, вероятно, не может захватить электрон и, сохраняя эффективный положительный заряд, снижает энергию электронов соседних ионов фтора. Если бы поверхностная вакансия была способна захватить электрон от иона фтора, несомненно, должен был бы наблюдаться автокатализ. То же самое нужно сказать об объемной вакансии, захватившей уже один электрон, оставшийся после удаления из кристалла атома фтора. Далее, совершенно очевидно, что сечение, представленное на рис. 4, не является поверхностью кристалла СоРз, так как над поверхностными ионами Со + должно находиться некоторое число ионов фтора, образующих еще один малозаполненный слой. Эти ионы также способны вступать в реакцию и покидать кристалл, в результате чего возникают вакансии. Однако последние практически не (Имеют эффективного заряда и не должны влиять на образование Ртов в указанном выше сечении. С другой стороны, ионы фтора малозаполненного слоя до взаимодействия с водой должны терять электрон. Так как кристалл СоРз является изолятором, а описываемые ионы фтора наименее связаны с кристаллом, электроны последних, по-видИмому, могут переходить лишь на имеющиеся в сечении (см. рис. 4) атомы PSob, что не должно привести к изменению ранее вычисленной концентрации (Рпов) =/С(1 — 2а). [c.57]

    Механизм прямого возбуждения колебательных уровней электронным ударом не может объяснить наблюдаемые величины сечения колебательного возбуждения в N3 и СО, где происходят переходы с большими изменениями колебательного квантового числа. Поэтому было предлоя ено объяснение, согласно которому резонансные процессы идут через образование связанных состояний [112]. Эта идея обсуждалась теоретически в работах [123—136], причем в [133] получены сечения захвата для N3. На основании этих расчетов авторы [137] пришли к выводу, что данный механизм ( в тех газах, где он имеет место) является решающим при обмене энергиями между электронным газом и молекулами в низкотемпературной плазме. [c.66]

    На рис. 3 показаны три типа структур вольфрамовых бронз. Посторонние ионы проникают в туннели внутри ковалентной решетки. В случае гексагональной фазы эти туннели имеют гексагональное сечение, у квадратной фазы — квадратное или пятиугольное сечение и квадратное сечение у кубической фазы. Каждый посторонний ион, проникающий в ковалентную решетку, теряет свои периферические электроны, которые переходят на 5й-уровень. Если количество посторонних ионов, выражаемое величиной а , достаточно велико, то эти электроны делокализу-ются в решетке и бронзы типа Mд.WOз обладают тогда металлическими свойствами. Рисунок 4 показывает, что в этих условиях величина электропроводности пропорциональна х [51. Несмотря на сходство строения, фазы К РеРд и К СгРз резко отличаются от вольфрамовых бронз своими изолирующими свойствами. -Электроны локализованы в этих соединениях вблизи железа или хрома. Это объясняется, несомненно, меньшей растяжимостью Зй-орбиталей, но также, конечно, очень электроотрицательным характером фтора, что облегчает захват электронов и делает обмен электронами более трудным. [c.78]

    В таблицу включены все естественные и достаточно доступные искусственные изотопы, имеющие заметный период полураспада. Содержание изотопов в естественных элементах указано в процентах, масса — в шкале С = 12,0000, а энергии распада — в МэВ. В таблице использованы следующие сокращенные обозначения т (в верхнем индексе)— метастабильные состояния изотопов-изомеров, —испускание отрицательных бета-частиц (электронов), — испускание позитронов, а — альфа-распад, ЗЭ — захват электронов, ИП — изомерный переход, СД — самопроизвольное деление. Сечения захвата тепловых нейтронов приведены в барнах (16 =10- см ), микробарнах (мкб), миллибарнах (мб) или килобарнах (кб). В тех случаях, когда захват нейтронов может приводить к образованию более одного изотопа какого-либо элемента, в таблице приведено сечение захвата, соответствующее образованию изомера с наибольщим периодом полураспада. [c.103]

    Захватывая нейтрон по реакции (п,7), ядро-мишень (в данном случае — изотопы плутония) увеличивает свою атомную массу на единицу, превращаясь в следующий изотоп того же элемента. Так продолжается до тех пор, пока очередь не дойдёт до такого изотопа, избыточное количество нейтронов в ядре которого определит энергетическую необходимость ядерного превращения путём /3-распада. При этом избыточный нейтрон превращается в протон и заряд ядра увеличивается на единицу — исходный химический элемент превращается в следующий. Это упрощённое описание даёт общее представление о схеме образования новых химических элементов при нейтронном облучении. В действительности ядерные характеристики изотопов ТУЭ определяют более широкую палитру конкурирующих ядерных превращений, среди которых можно назвать электронный захват (превращение протона ядра в нейтрон), различные изомерные переходы, а также характерные только для тяжёлых ядер а-распад и спонтанное деление. Важно отметить, что для того, чтобы пройти путь от 238рц 252(2 необходимо осуществить последовательность ядерных реакций, которая должна включать 14 нейтронных захватов. Чтобы провести этот процесс в разумное время и при этом накопить весовое количество целевых радионуклидов, необходимо обеспечить очень высокую плотность потока нейтронов в объёме облучаемого материала. Значения тепловых сечений и резонансных интегралов некоторых изотопов ТПЭ [4] приведены в табл. 9.1.2. [c.507]

    Диэлектронная рекомбинация. У многих атомов (Са, Си, Т1, Hq и др.) имеются серии уровней с энергией, превышающей энергию ионизации (автоионизационные уровни). Безызлучательный захват ионом свободного. электрона с образованием атома с возбужденными автоионизационными уровнями может привести к рекомбинации, если атом быстро переходит в состояние с энергией возбуждения ниже границы ионизации. Этот переход монлет происходить с излучением кванта света, или путем неупругих соударений 2-го рода с другими частицами. Такие процессы называются диэлектронной рекомбинацией. Для иона водорода такой процесс невозможен, а его сечение для иона Не меньше сечения излучательной рекомбинации. Экспериментальные сведения о величине коэффициента диэлек- [c.69]


Смотреть страницы где упоминается термин Сечение захвата электронов переходов: [c.109]    [c.44]    [c.103]    [c.126]    [c.272]    [c.144]    [c.197]    [c.331]    [c.605]   
Количественная молекулярная спектроскопия и излучательная способность газов (1963) -- [ c.152 ]




ПОИСК





Смотрите так же термины и статьи:

Захват

Переход электрона

Сечение

Сечение захвата

Сеченов

Электронный захват

Электроны захвата



© 2025 chem21.info Реклама на сайте