Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Прочность тантала

    На рис. 184 и 185 графически представлена зависимость предела прочности тантала от температуры и механически.х свойств тантала относительно направления прокатки. [c.518]

    Тантал непосредственно реагирует с азотом с образованием трех фаз твердого раствора азота в тантале и нитридов ТагЫ и ТаЫ. Реакция начинается около 300 °С, причем скорость ее возрастает с повышением температуры до тех пор, пока при ИОО°С не образуется ТаМ. Поглощенный танталом азот вновь выделяется в условиях высокою накуума при температуре 2000°С. Присутствие азота, как и кислорода, увеличивает твердость и прочность тантала и снижает его пластичность. [c.334]


    Предел прочности тантала при растяжении  [c.278]

    Ползучесть и длительная прочность тантала 36] [c.78]

    В отдельных случаях тантал нашел применение для изготовления трубок теплообменных аппаратов (прочность тантала позволяет делать трубки с очень тонкими стенками), змеевиков, [c.156]

    Висмут. При температурах ниже 1000° С жидкий висмут оказывает на тантал слабое воздействие [19, 20—22]. Скорость коррозии при 870° С составляет менее 0,13 мм/год. При температуре 815° С не отмечалось отрицательного влияния висмута на характеристики длительной прочности тантала [23], но при 1000° С наблюдалась некоторая межкристаллитная коррозия [24]. [c.208]

    Свинец. Тантал обладает высокой стойкостью к жидкому свинцу при температурах до 1000° С [19]. Скорость коррозии в этих условиях не превышает 0,025 мм/год [26]. Испытания в жидком свинце при 815° С не обнаружили снижения характеристик длительной прочности тантала [23]. [c.208]

    Практически абсолютная устойчивость тантала в царской водке любого состава позволяет применять его в особо агрессивных условиях. Тантал может быть широко использован в химическом машиностроении в качестве самостоятельного конструкционного металла для изготовления главным образом теплообменной аппаратуры (конденсаторы, теплообменники, ректификационные установки и т. п.) и для плакировки аппаратуры из углеродистой стали. Известно применение тантала для изготовления трубок теплообменных аппаратов (прочность тантала позволяет делать трубки с очень тонкими [c.262]

    Карбид вольфрама С обладает очень высокой твердостью (близкой к твердости алмаза), износоустойчивостью и тугоплавкостью. На основе этого вещества созданы самые производительные инструментальные твердые сплавы. В их состав входит 85— 95% УС и 5—15% кобальта, придающего сплаву необходимую прочность. Некоторые сорта таких сплавов содержат, кроме карбида вольфрама, карбиды титана, тантала и ниобия. Все эти сплавы получают методами порошковой металлургии и применяют главным образом для изготовления рабочих частей режущих и буровых инструментов. ...........  [c.661]

    Такие же явления происходят в случае применения ряда комплексообразователей для удержания в растворе некоторых катионов. В качестве комплексообразователей часто применяют, например, винную кислоту СООН—СНОН—СНОН—СООН. Прочность виннокислых комплексов также зависит от pH раствора. При понижении кислотности катион более прочно связывается с анионом винной кислоты. Поэтому некоторые ионы, например тантала и ниобия, осаждаются оксихинолином в присутствии виннокислых солей только при подкислении растворов. Наконец, многие органические реактивы в сильнощелочной среде могут довольно быстро окисляться кислородом воздуха при этом образуются новые соединения, и условия осаждения нарушаются. [c.105]


    Карбид вольфрама W обладает очень высокой твердостью (близкой к твердости алмаза), износоустойчивостью и тугоплавкостью. На основе этого вещества созданы самые производительные инструментальные твердые сплавы. В их состав входит 85—95% W и 5—15% кобальта, придающего сплаву необходимую прочность. Некоторые сорта таких сплавов содержат кроме карбида вольфрама карбиды титана, тантала и ниобия. Все эти сплавы получают методами порошковой металлургии и применяют главным образом для изготовления рабочих частей режущих и буровых инструментов насадки резцов, сверл, фрез для обработки высокоуглеродистых и нержавеющих сталей. Однако при высоких температурах карбид состава W разлагается с образованием другого, но менее твердого карбида вольфрама  [c.517]

    Тантал — тяжелый металл характерного синевато-серого цвета. В чистом виде он обладает хорошими механическими свойствами твердостью, ковкостью и тягучестью. По прочности танталовая жесть как прокатанная, так и отпущенная близка к прокатанной и отпущенной стали. Тантал хорошо прокатывается и обрабатывается под давлением после отжига в холодном состоянии может быть обжат на 60%. Сваривается под водой как с самим собой, так и с ЫЬ и N1. Отличается плохой теплопроводностью и электропроводностью сопротивление тантала электрическому току в 7 раз больше, чем у меди, а температурный коэффициент электрического сопротивления меньше, чем у меди. При высокой температуре в вакууме он распыляется очень мало, на чем основано его применение в лампах накаливания. В нагретом состоянии поглощает N3 и другие газы, которые пол- [c.305]

    Сродство поверхности кремния к кислороду и связанная с этим склонность к формированию тонких оксидных пассивирующих покрытий позволяют при определенных условиях сместить процесс, протекающий на границе кремний—электролит в сторону образования более толстого слоя оксида. Это обычно достигается подачей на кремниевый электрод высокого положительного потенциала. Катодом при этом может служить любой инертный в данном электролите металл (платина, тантал,и т. п.). На практике невозможно получить анодные окисные пленки толще нескольких тысяч ангстрем. Это обусловлено тем, что предельный потенциал, достигаемый в процессе анодного окисления кремния, определяется электрической прочностью оксида. Кроме того, задаваемая величина тока, определяющая скорость роста оксида, также должна быть ограничена, поскольку в противном случае возможен сильный разогрев электролита, кремниевого анода, что делает процесс неуправляемым и сильно ухудшает качество образующейся пленки. [c.116]

    Некоторые свойства карбидов приведены в табл. 12.21. Карбиды ниобия и тантала можно получить в виде усов или нитевидных монокристаллов с очень высокой прочностью. [c.339]

    Физические и химические свойства. Физические свойства ванадия, ниобия и тантала (как и металлов IVB-подгруппы) зависят от степени чистоты. Примеси (кислород, водород, азот, углерод) понижают их пластичность и прочность, повышают твердость и хрупкость. [c.413]

    На растворимость существенно влияет электронная концентрация. Увеличение числа валентных электронов может увеличивать прочность связи и устойчивость фазы, поэтому растворение металлов с высокой валентностью в металлах с низкой валентностью происходит легче, чем обратное явление. Это обстоятельство является причиной низкой растворимости в цирконии бериллия, алюминия, индия. Непрерывные твердые растворы цирконий образует с титаном и гафнием. Тантал и ниобий неограниченно растворяются только в 3-2г и Р-Н . В системах циркония с ванадием и молибденом в отличие от титана имеет место ограниченная растворимость. [c.302]

    Лантаноиды используют в производстве чугуна и высококачественных сталей. Введение этих элементов в чугун в виде ферроцерия (сплав церия с железом) или сплава различных лантаноидов повышает прочность чугуна. Небольшие добавки лантаноидов к стали очищают ее от серы, азота и других примесей, так как лантаноиды, являясь химически активными металлами, взаимодействуют с примесями. При этом повышаются прочность, жаропрочность и коррозионная устойчивость сталей. Такие стали пригодны для изготовления деталей сверхзвуковых самолетов, оболочек искусственных спутников Земли. С помощью лантаноидов получают также жаропрочные сплавы легких металлов — магния и алюминия. Благодаря сплавам лантаноидов проводят металлотермическое восстановление многих металлов (титана, ванадия, циркония, ниобия, тантала и др.), используя в этом процессе большое сродство лантаноидов к кислороду. [c.446]

    Первый потенциал ионизации возрастает от ванадия к ниобию незначительно (на 0,14 В), а от ниобия к танталу более резко (на 1,0 В). Это объясняется заметным уплотнением электронной оболочки тантала за счет ярко выраженного эффекта проникновения б -электронов под экран 4/ -электронов. Однако вторые потенциалы ионизации в этом ряду монотонно уменьшаются, что можно объяснить относительным уменьшением прочности связи оставшегося неспаренного я-электрона с ядром. В целом оказывается, что сумма первых двух потенциалов ионизации у ванадия заметно больше (21,87 В), чем у ниобия и тантала (20,36 20,58 В соответственно), а у последних эти характеристики практически совпадают. Сравнивая последующие потенциалы ионизации, отметим, что 1 , /4, /5 уменьшаются в ряду V — N1) — Та. Это приводит к уменьшению в этом же направлении суммы пяти потенциалов ионизации. Последнее обстоятельство и объясняет, с одной стороны, увеличение стабильности высшей степени окисления при переходе от ванадия к танталу, а с другой. стороны, нарастание металлических 426 [c.426]


    Влияние легирующих элементов на пределы прочности и текучести, а также относительное удлинение и ударную вязкость тантала показано на рис. 32. Согласно этим данным, все легирующие элементы в той или иной степени повышают прочностные свойства тантала и снижают пластич- [c.35]

    НОСТЬ. По влиянию на предел прочности легирующие элеметы располагаются в определенной последовательности в соответствии со степенью искажения кристаллической решетки, т. е. еще раз подтверждается установленная ранее закономерность. Характер изменения предела текучести (00,2) тантала при растворении в нем второго компонента идентичен характеру изменения предела прочности. Наиболее эффективным упрочнителем тантала является ванадий, легирование которым приводит к резкому уменьшению параметра решетки. При введении 27 мас.% V предел прочности увеличивается от 37 до 110 кгс/мм . [c.37]

    Переработка титано - тантало-ниобиевых концентратов. Минералы лопарит, пирохлор, коппит и другие обладают невысокой химической прочностью и сравнительно легко разлагаются. Основная трудность — сложно отделить титан от ниобия и тантала. Ti, Та, Nb, присутствуя совместной оказывая друг на друга взаимное влияние, несколько теряют характерные индивидуальные свойства. [c.70]

    Тантал характеризуется высокой прочностью и тугоплавкостью. Температура его плавления 3000°С. Тантал стоек в сильноагрессивных средах, таких как горячая соляная кислота, смесь соляной и азотной кислоты ( царская водка ), но нестоек к воздействию олеума, соединений фтора, концентрированных растворов щелочей. [c.14]

    Эти тугоплавкие металлы с незначительным давлением пара и высокой механической прочностью при небольшом коэффициенте термического расширения находят разнообразное применение в качестве материалов для изготовления сосудов и нагревательных элементов. Из этих металлов производятся готовые изделия, а также фольга, трубки, проволока и т. д. Нагревание этих материалов до температуры выше 500 °С может производиться лишь в атмосфере защитного газа или в вакууме. Для молибдена и вольфрама защитным газом, кроме инертных, может быть водород или смесь водорода и азота (газ для синтеза аммиака), а для ниобия и тантала — только инертные газы. Тантал весьма устойчив к действию хлороводорода, а молибден даже при нагревании не разрушается в контакте с щелочными, щелочноземельными и земельными металлами. Для механической обработки очень твердого вольфрама необходим специальный инструмент. [c.35]

    Ванадий — важнейшая после марганца легирующая добавка к стали для придания ей ковкости и сопротивления к удару. Ниобий и тантал применяют как присадки к инструментальным сталям для повышения их прочности и коррозионной стойкости, в чистом виде [c.181]

    Определению содержания тантала с использованием бриллиантового зеленого не мешают большие количества ниобия — постоянного спутника тантала. Ниобий образует с реагентом экстрагируемые ассоциаты, прочность которых значительно ниже прочности соответствующих соединений тантала. Коэффициент экстракции ниобиевых соединений возрастают с повышением концентрации фторид-ионов. Так, определению тантала при концентрации 0,22 М не мешают 5 мг N5, а при 0,5 М мешают 200 мкг ЫЬ. [c.154]

    НЕИЗМЕННАЯ ПРОЧНОСТЬ. Сплав тантала с 8% вольфрама ] 2% гафния имеет высокую прочность и при температуре, близко] к абсолютному нулю, и при 2000° С. Он хорошо обрабатывается i сваривается. Сплав предназначен для изготовления камер сгора ния ракетных двигателей, каркаса и обшивки ракет. [c.168]

    Высокая прочность и твердость сочетаются в нем с отличными пластическими характеристиками. Чистый тантал хорошо поддается механической обработке, легко штампуется, перерабатывается в тончайшие листы (толщиной около 0,04 Mit) и проволоку. Характерная черта тантала — его высокая теплопроводность. Но, пожалуй, самое важное физическое свойство тантала — тугоплавкость он плавится почти при 3000° С (точнее, при 2996° С), уступая в этом лишь вольфраму и рению. [c.171]

    Однако на медицинские нужды расходуется лишь 5% производимого в мире тантала, около 20% потребляет химическая промышленность. Основная часть тантала — свыше 45% — идет в металлургию. В последние годы тантал все чаще используют в качестве легирующего элемента в специальных сталях — сверхпрочных, коррозионностойких, жаропрочных. Действие, оказываемое на сталь танталом, подобно действию ниобия. Добавка этих элементов к обычным хромистым сталям повышает их прочность и уменьшает хрупкость после закалки и отжига. [c.175]

Рис. 184. Влияние температуры на предел прочности тантала ГЗЗО] Рис. 184. <a href="/info/15368">Влияние температуры</a> на <a href="/info/602248">предел прочности тантала</a> ГЗЗО]
    В табл. 121 и 122 приведены значения модуля упругости, ползучести и длительной прочности тантала в зависимости от температуры [36, 65]. Модуль упругости тантала при сдвиге равен 7000 кГ1мм . а коэффициент Пуассона 0,35 [43]. [c.79]

    Тантал и ниобий. Температура плавления тантала 2996°С, ниобия— 2415°С. Тантал, близкий по свойствам к ниобию, имеет почти в два раза большую удельную плотность. Эти металлы обладают низкой скоростью испарения и высоким электросопротивлением, превышающим в три раза электросопротивление вольфрама. Тантал и ниобий часто используются в нагревательных элементах, для изготовления держателей катодов, для деталей, получаемых из листа и тонких фолы. Из тантала получают фольгу толщиной до 4 мкм. По механической прочности тантал и ниобий уступают вольфраму и молибдену. Температура рекристаллизации тантала 1300°С, ниобия — 1050°С. Тантал и ниобий активно взаимодействуют с водородом, что используется для изготовления из них нераопыляемых газопоглотителей. Особенно активно тантал и ниобий поглощают газы в интервале температур 600...700°С. Учитывая большую дефицитность тантала, часто применяют его сплавы с ниобием (ТН-20, ТН-50, ТН-80), содержащие 20...80% ниобия. [c.49]

    Карбиды металлов — наиболее тугоплавкие вещества. Так, карбиды гафния и тантала плавятся лишь при 4000 °С. Наиважней-ишй карбид — карбид железа ГезС (цементит). Чугун и сталь обязаны своей износоустойчивостью и прочностью именно карбиду железа, входящему в их структуру. [c.135]

    В предыдущем разделе мы видел , что экспериментальные значения теплот хемосорбции многих газов обладают наибольшей величиной для тантала и падают в определенной последовательности при переходе к другим металлам. Последовательность, которая там приведена, несколько отличается от порядка расположения металлов по теплотам сублимации [68]. Но если уравнение (32) справедливо и членом, учитывающим значения элоктроотрицательности можно пренебречь или он одинаков для всех металлов, то выражения для разных металлов будут отличаться членом, отражающим прочность связе+1 между цх атомами, который будет изменяться при переходе от одного металла к другому в соответствии с изменением теплот сублимации. [c.59]

    Ниобий и тантал нашли широкое применение благодаря таким практически ценным свойствам, как высокая температура плавления, значительная коррозионная стойкость, механическая прочность, малый коэффициент термического расширения. Эти металлы идут на изготовление быстрорежущих и корроэион-ностойких сталей. Ниобий используют также в радиотехнике, производстве рентгеновской и радиолокационной аппаратуры. [c.505]

    Ванадий, ниобий и тантал характеризуются объемноцентрированной кристаллической решеткой. Механические свойства металлов весьма сильно зависят от их чистоты. Малейшие примеси водорода, углерода, азота и кислорода, содержащиеся в этих металлах, увеличивая твердость и предел прочности (временное сопротивление на разрыв), резко уменьшают пластические свойства (удлинение, работу вязкога разрушения, поперечное сужение), делая металлы хрупкими. [c.91]

    Первый потенциал ионизации в ряду V—Nb—Та возрастает от ванадия к ниобию незначительно (на 0,14 В), а от ниобия к танталу более резко (на 1,0 В). Это объясняется заметным уплотнением электронной оболочки тантала за счет ярко выраженного эффекта проникновения 6з-электронов под экран из 4/"-электронов. Однако вторые потенциалы ионизации в этом ряду монотонно уменьшаются, что можно объяснить относительным уменьшением прочности связи оставшегося неспаренного s-электропа с ядром. В целом оказывается, что сумма первых двух потенциалов ионизации у ванадия заметно больше (21,87 В), чем у ниобия и тантала (20,36 20,58 В соответственно), а у последних эти характеристики практически совпадают. Сравнивая последующие потенциалы ионизации, отметим, что /,, /4, уменьшаются в ряду V—Nb—Та. Это приводит и к уменьшению в этом же направлении суммы пяти потенциалов ионизации. Последнее обстоятельство и объясняет, с одной стороны, увеличение стабильности высшей степени окисления при переходе от ванадия к танталу, а с другой стороны, нарастание металлических свойств В степени окисления +5 в том же направлении, что вообще характерно для многих -элементов. Последнее обстоятельство подтверждается и изменеиием электроотрицательности, которая несколько уменьшается при переходе от ванадия к ниобию и танталу. [c.300]

    ТАНТАЛА СПЛАВЫ. Обладают достаточно высокой мех. прочностью и жаропрочностью до 1500-1650 С, низким коэф. термич. расширения, стойки в р-рах мн. к-т, расплавах щелочных и др. легкоплавких металлов, хорошо свариваются аргонодуговой и электроннолучевой сваркой тугоплавки (т. пл. 3000°С) по сравнению со сплавами др. тугоплавких металлов пластичны и вязки. Осн. легирующие элементы-тугоплавкие переходные металлы (КЬ, 2г, Щ V, Мо), содержание к-рых колеблется от 2 до 35% по массе. По структуре Т. с.-твердые р-ры с объемноцентрир, кубич. решеткой. Содержание неметаллич. примесей (С, О, Н) обычно не превышает 0,003-0,03% по массе. Увеличение содержания примесей ухудшает технологические свойства (деформируемость при обработке давлением, пластичность сварных соединений) вследствие образования твердых растворов внедрения и различных фаз (карбидов, оксидов и др.). [c.496]

    Титрование Мп(П) раствором перманганата калия до Мп(П1) наиболее удобно проводить при потенциале платинового электрода -f-0,4 в (отн. МИЭ) [154, 594, 595, 661, 1022]. При этом полностью исключается как анодный ток окисления Mn(II), так и катодный ток, образующ ийся при титровании Мл(П1). Кривые титрования получаются отчетливыми. Ионы Fe(III), Al(III), Ti(IV), a(II), Mg(II), Ni(II), o(II) в присутствии пирофосфата не мешают титрованию, так как образуют с пирофосфатом натрия комплексные соединения, не окисляюш иеся КМПО4 при указанном значении потенциала. Сг(П1) дает комплексное соединение с пирофосфатом натрия, состав и прочность которого изменяются во времени и поэтому в его присутствии необходимо выдержать раствор 15— 20 мин. перед титрованием. Восстановители должны отсутствовать. Обычно титрование проводят с одним или двумя платиновыми индикаторными электродами. Использование амперометрической установки с двумя индикаторными электродами обеспечивает резкое возрастание величины тока вблизи точки эквивалентности, что позволяет заканчивать определение без построения графиков. Амперометрическое титрование Ми(II) по катодной волне перманганата с применением медного и графитового электродов дает удовлетворительные результаты. Недостаток графитового электрода — довольно медленное установление величины тока. Медные и молибденовые электроды не пригодны для проведения анодных процессов на фоне раствора пирофосфата натрия. Ниобий-танта-ловый электрод не может служить индикаторным электродом при амперометрическом титровании перманганатом [153]. Были применены серебряные и другие электроды [1006, 1489]. Титрованием Мп(П) перманганатом калия до Мп(1П) определяют марганец в стали, чугуне [661, 1084, 1489] и цинковых электролитах [154]. [c.50]

    ТОЛЬКО ОДИН ОКИСЕЛ. Раньше считалось, что, подобно мн гим другим переходным металлам, тантал при взаимодейств] с кислородом может образовывать несколько окислов разно состава. Однако более поздние исследования показали, что к слород окисляет тантал всегда до пятиокиси ТагОь. Суш ест1 вавшая путаница объясняется образованием твердых раствор кислорода в тантале. Растворенный кислород удаляется п нагревании выше 2200° С в вакууме. Образование твердых рас воров кислорода сильно сказывается на физических свойств, тантала. Повышаются его прочность, твердость, электрическ сопротивление, но зато снижаются магнитная восприимчивое и коррозионная стойкость. [c.178]


Смотреть страницы где упоминается термин Прочность тантала: [c.25]    [c.524]    [c.294]    [c.294]    [c.482]    [c.100]    [c.121]    [c.89]    [c.102]   
Тугоплавкие материалы в машиностроении Справочник (1967) -- [ c.289 ]




ПОИСК





Смотрите так же термины и статьи:

Тантал



© 2025 chem21.info Реклама на сайте