Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диссоциация в некоторых неводных растворителях

    Полиэлектролитное набухание можно устранить путем введения в исходный раствор некоторого избытка нейтрального низкомолекулярного электролита или путем поддержания постоянной ионной силы раствора при разбавлении. Тогда концентрация компенсирующих противоионов в молекулярных клубках не изменяется при разбавлении, и полиэлектролит в растворе ведет себя, как незаряженный полимер приведенная вязкость линейно уменьшается с уменьшением концентрации (см. рис. IV. 3). Аналогичное поведение обнаруживает полиэлектролит в растворителях с относительно низкой диэлектрической проницаемостью, в которых электролитическая диссоциация практически полностью подавлена (например, полиметакриловая кислота в абсолютном метаноле или полиакриловая кислота в диоксане). Такими приемами разбавления или подбором подходящего неводного растворителя пользуются при определении молекулярной массы полиэлектролита вискозиметрическим методом. [c.121]


    Электролиты — это химические соединения, которые в растворе (полностью или частично) диссоциируют на ионы. Различают сильные и слабые электролиты. Сильные электролиты диссоциируют в растворе на ионы практически полностью. Примерами сильных электролитов в водных растворах могут служить некоторые неорганические основания (NaOH) и кислоты (НС1, HNO3), а также большинство неорганических и органических солей. Слабые электролиты диссоциируют в растворе только частично. Доля продиссоциировав-ших молекул из числа первоначально взятых называется степенью диссоциации. К слабым электролитам в водных растворах относятся почти все органические кислоты и основания (например, СН3СООН, пиридин) и некоторые неорганические соединения. В настоящее время Б связи с развитием исследований в неводных растворах доказано (Измайлов и др.), что сильные и слабые электролиты являются двумя различными состояниями химических соединений (электролитов) в зависимости от природы растворителя. В одном растворителе данный электролит может быть сильным электролитом, в другом — слабым. [c.244]

    Соли лития занимают во многих отношениях особое положение среди других солей щелочных металлов. Кроме того что некоторые из них трудно растворимы В воде (что было отмечено), различные литиевые соли обнаруживают сравнительно большую растворимость в неводных растворителях. В этих неводных растворителях они в основном сильно диссоциированы на ионы. Понижение температуры замерзания и повышение температуры кипения водных растворов литиевых солей нередко превышают теоретические значения, вычисленные при предположении полной диссоциации. Это объясняется значительной гидратацией ионов лития, вследствие чего происходит заметное уменьшение количества воды, являющейся растворителем. [c.212]

    Диссоциация в некоторых неводных растворителях [c.35]

    Неводные растворители уменьшают степень диссоциации окращенных соединений и создают благоприятные условия для использования малопрочных соединений в фотометрическом анализе. Чувствительность и точность фотометрических определений в полярных растворителях, как правило, повышается по сравнению с водными растворами, где значительная часть определяемого иона остается не связанной в окрашенное соединение. Наиболее удобен для этой цели ацетон, который смешивается с водой в любых соотношениях. Диссоциация больщинства электролитов в ацетоне очень сильно уменьшается. Например, фотометрическое определение малоустойчивого синего роданидного комплекса кобальта обычно производят в среде 50 % ацетона, так как в водной среде это определение практически провести невозможно. Применение 90 % этилового спирта новы-шает устойчивость роданидного комплекса железа в 250 раз. Прибавление ацетона или этилового спирта оказывается полезным для определения и некоторых других металлов в виде роданидных комплексов. [c.268]


    Исследования показали, что диссоциация сильных в воде электролитов в некоторых неводных растворах подчиняется закону действия масс. И. А. Измайловым [1], высказавшим мысль о необходимости нахождения общих закономерностей, охватывающих как сильные, так и слабые электролиты, было показано, что в действительности процессы взаимодействия растворителя и электролита, протекающие в растворах кислот, оснований и солей, значительно многообразнее, чем это предполагалось ранее. Этим же автором предложена новая схема диссоциации электролитов, учитывающая все главнейшие процессы, протекающие в растворах. [c.16]

    Константы диссоциации некоторых цветных индикаторов в воде, неводных и смешанных растворителях [c.541]

    При рассмотрении поведения координационных соединений в растворах обычно предполагают, что растворителем является вода но некоторые координационные соединения растворяются в неводных растворителях, которые в последнее время стали широко применять. В этих растворителях ионы металла окружены молекулами растворителя, и реакция комплексообразования заключается в замене молекул растворителя другими лигандами. По существу, равновесие в неводных растворителях аналогично равновесию в водных растворах. Ограниченная растворимость ионов в большинстве неводных растворителей, трудности, связанные с недостаточной диссоциацией солей (спаривание ионов) в них, и удобство водных систем приводят к тому, что большинство исследований равновесий проводят в водных средах. Ниже будут рассмотрены равновесия в водной среде кроме того, с некоторыми изменениями аналогичная трактовка будет применена к другим растворителям. [c.131]

Таблица 47. Константы диссоциации некоторых цпетных индикаторов в воде, неводных и смешанных растворителях (в единицах рйГ) Таблица 47. <a href="/info/1513783">Константы диссоциации некоторых</a> цпетных индикаторов в воде, неводных и <a href="/info/8339">смешанных растворителях</a> (в единицах рйГ)
    Раздельное титрование смеси слабых в воде кислот улучшается с применением неводных растворителей. В результате снижения диэлектрической постоянной увеличивается разница между первой и второй константами диссоциации ди-карбоновой кислоты, так как за счет большого заряда иона во второй ступени (двухзарядный анион) межионное взаимодействие возрастает в большей степени, чем в первой ступени. Это приводит к уменьшению величины соотношения в уравнении (50). Еще в большей степени величина соотношения применительно к смесям кислот может быть снижена за счет различного химического взаимодействия между молекулами и ионами кислоты и растворителем. Наибольшей дифференцирующей способностью обладают ацетон, метил-этилкетон, метилизобутилкетон, пиридин, гликоли и некоторые другие растворители (рис. 30). [c.66]

    В неводных растворителях на сольволиз солей, кроме констант диссощ1а-ции кислот и оснований, образующих соль, оказывает влияние автопротолиз растворителя. В некоторых неводных и смешанных растворителях соли диссоциируют полностью, в других ассоциированы в заметной степени. При определенных соотношениях констант диссоциации электролитов, образующих соль, в зависимости от ее концентрации неполная диссоциация солей оказывает влияние на pH растворов. [c.23]

    Оставляя в стороне другие многочисленные выступления ученых различных стран но поводу теории электролитической диссоциации, отметим, что ее появление вызвало значительное оживление исследований в области теории растворов и электрохимии. Несмотря на то, что теория Аррениуса не могла удовлетворительно объяснить некоторые экспериментально установленные факты, например, аномальную проводимость электролитов в неводных растворителях, отступления от теории концентрированных растворов и растворов сильных электролитов и т. д., она все же объясняла некоторые другие факты. Так, теория электролитической диссоциации оказалась сильным аргументом в пользу осмотической теории Вант-Гоффа с ее помощью оказалось возможным объяснить многие явления и экспериментально установленные факты — силу кислот и оснований, каталитические свойства кислот, окраску растворов электролитов, закон термонейтральности и т. д. [c.432]

    В неводных растворах у большинства электролитов степень диссоциации меньше, чем в водных. Даже полностью диссоциированные в воде электролиты в большинстве неводных растворителей диссоциируют частично. Уменьшение силы слабых в воде электролитов в неводных растворах может быть очень значительным. Только в некоторых случаях удается усилить диссоциацию слабых электролитов подбором соответствующей среды. Например, сила слабых в воде оснований увеличивается в протогенных растворителях (уксусная кислота), а очень слабых кислот —в протофильных растворителях (жидкий аммиак). Величины равновесных концентраций ионов одних и тех же электролитов при одной и той же концентрации растворенного вещества в различных растворителях изменяются, что влияет на ионную силу раствора. Поэтому отклонение величины % при данной концентрации от Яог может быть различным. Кроме этого, понижение удельной электропроводности раствора электролита при титровании в неводных растворах может быть вызвано уменьшением равновесных концентраций ионов, обусловленным ослаблением силы электролитов. Поэтому удельная электропроводность растворов одного и того же электролита в различных растворителях и ее изменение в процессе титрования в различных растворителях могут варьироваться в широких пределах. [c.26]


    Основное внимание в книге уделено рассмотрению прямых химико-аналитических методов титрования органических веществ. Кроме того, приведены некоторые примеры титрования, используемые с целью изучения таких физико-химических проблем, как кинетика, определение констант диссоциации, исследование свойств растворителей, стандарты, индикаторные или электродные системы, комплексообразование (особенно в неводных растворах) и т. д. [c.67]

    Единая схема диссоциации электролитов см., например, монографию Н. А. И з м а ft-ло и а. Электрохимия растворов. Изд. ХГУ, Харьков, 1959) позволяет рассматривать химические реакции, происходящие в различных растворителях, с общей точки зрения. Ниже приводится сопоставление некоторых реакций, протекающих в водных растворах, с аналогичными реакциями в неводных средах. [c.409]

    Рентгеноструктурный анализ некоторых солей (типа КС1 и др.) показал, что в твердом состоянии эти соли существуют только в виде ионов. Это справедливо для водных, неводных (органических) и расплавленных солей, а также для солей в газообразном состоянии. В газообразном состоянии два иона, несущие противоположные заряды, например К+ и С1-, образуют ионную пару (между ними нет двухэлектронной связи). Следовательно, при растворении подобных солей в воде и других полярных растворителях не происходит диссоциации, и этот термин для сильных электролитов лишен смысла. Такой взгляд на полную ионизацию сильных электролитов полностью согласуется с электронной теорией химических связей. Вместе с тем необходимо иметь в виду другой важный факт. Несмотря на то что сильные электролиты существуют в растворе только в виде ионов, все же при конечных концентрациях их подвижность уменьшается из-за межионного взаимодействия. [c.62]

    Однако в концентрированных растворах, особенно в неводных растворах, такого единообразия не наблюдается. На начальном этапе исследований в области электрической проводимости растворов широко применялось правило Нернста-Томсона диссоциирующая сила растворителя тем больше, чем больше его диэлектрическая проницаемость. Однако введение диэлектрической проницаемости в закон Кулона встречает существенное возражение — в микроскопическом объеме нельзя применять макроскопическую величину диэлектрической проницаемости. На очень большом опытном материале показано, что при соответствующем подборе компонентов раствора можно для любого растворителя (с малой или большой величиной диэлектрической проницаемости) найти такое вещество, которое образует с этим растворителем проводящий раствор. Некоторые из типичных сильных электролитов (например галогеноводородные кислоты) совершенно не диссоциируют на ионы при растворении в HF другие (большинство солей) вступают в реакции двойного обмена и, следовательно, не могут быть растворены как таковые в HF третьи (кислоты) хотя и образуют с фтороводородной кислотой проводящие растворы, схема их диссоциации отличается от схемы в водных растворах. Эти экспериментальные факты обнаруживают слабость основных постулатов теории диссоциации и ионного переноса заряда. [c.182]

    Примерно в этот же период начинаются обширные циклы работы Франклина, Крауса и Вальдена по электрохимии неводных растворов. Развиваясь параллельно с постепенным признанием теории электролитической диссоциации Аррениуса, они окончательно опровергли высказывавшуюся до 1900 г. многими авторами точку зрения, будто вода является единственным растворителем, в котором возможна ионизация. По мере накопления материала все больше обнаруживалось различие в поведении водных и неводных систем. В конце XIX и в первые два десятилетия XX в. за рубежом и, в особенности, у нас был накоплен значительный материал по физикохимическим характеристикам водных и неводных растворов электролитов и неэлектролитов. В итоге удалось сформулировать ряд правил и эмпирических соотношений, многие из которых сохранили свое значение и до сих пор. При этом необходимо подчеркнуть, что работы русских ученых выделяются систематическим стремлением сочетать физический и химический подход к наблюдаемым явлениям, избегая односторонности, и развиваются в основном в русле учения Д. И. Менделеева о растворах. Любой современный исследователь, занимающийся проблемой растворов, вынесет для себя много полезного, ознакомившись с трудами В. Ф. Алексеева, И. Ф. Шредера, Н, Н. Бекетова, М. С. Вревского, Е. В. Бирона, В. Ф. Тимофеева, А. Н. Саханова, П. Вальдена и др. [56]. Проявляемое некоторыми молодыми учеными пренебрежительное отношение к мыслям, обоб- [c.20]

    Для этих расчетов необходимо иметь данные о температурных зави симостях диэлектрической проницаемости и плотности растворителя. Подробное описание экстраполяционных методов нахождения стандартных термодинамических функций можно найти в ряде работ [6—11], в которых обсуждаются их достоинства и недостатки. Однако следует отметить, что использование экстраполяционных методов вносит некоторую неопределенность в получаемые величины. Особенно это сказывается при исследовании процессов в неводных растворителях с низкой диэлектрической проницаемостью, где не)Л1ет диссоциации электролита может существенно исказить конечный результат. В связи с этим представляет принципиальный интерес нахождение стандартных термодинамических характеристик процесса растворения безэкстраполяционными метода . [c.160]

    Сольватационные эффекты обычно имеют существенное значение при растворении электролитов в полярных жидкостях. Во многих случаях эти эффекты настолько ярко проявляются, что некоторая часть молекул растворителя полностью связывается и в дальнейшем ведет себя как единое целое с ионом растворенного вещества. Как уже отмечалось, определенная степень сольватации имеет место во всех растворителях, полярность которых достаточна для диссоциации электролита. Однако можно указать немного растворителей, свойства которых изучены так же тщательно, как свойства воды. В то же время наблюдается все возрастающий интерес к неводным растворам электролитов. Современные успехи, достигнутые в исследовании неводных растворителей, компетентно освещены в обзоре Паркера [7] и в монографиях Лаговского [8], Уоддингтона [9], а также Яндера, Шпандау и Эдисона [9а]. Прежде чем перейти непосредственно к исследованию процессов гидратации, полезно коротко осветить совокупность современных представлений о структуре жидкой воды. [c.13]

    Для разделения ионов применяются не смешивающиеся с водой органические растворители, посредством которых ионы экстрагируются (извлекаются) из водной фазы в слой органического растворителя (стр. 31). Кроме разделения экстрагирование позволяет резко повысить и чувствительность определения за счет концентрирования определяемого компонента. Для повышения чувствительности и точности колориметрических определений, не связанных с экстрагированием, применяются обычно органические растворители, хорошо смешивающиеся с водой (этиловый спирт, ацетон и др.). Неводные растворители, смешивающиеся с водой, используются, главным образом, для колориметрического определения малоустойчивых окрашенных соединений, которые в водных растворах в значительной степени диссоциируют на ионы. Неводные растворители уменьшают степень диссоциации окрашенных соединений и тем самым предотвращают ошибки определения. Наиболее удобен для этой цели ацетон, который смешивается с водой в любых соотношениях. Диссоциация большинства электролитов в ацетоне очень сильно уменьшается. Например, колориметрическое определение малоустойчивого синего роданидного комплекса кобальта обычно производят в среде 50%-ного ацетона, так как в водной среде это определение провести практически невозможно. Применение 90%-ного этилового спирта повышает устойчивость роданидного комплекса железа в 250 раз. Прибавление ацетона или этилового спирта оказывается полезным для определения и некоторых других металлов в виде ро-дапидных комплексов. [c.11]

    Обнаружение конечной точки титрования. Обычно титрование в неводной среде проводят со стеклянным индикаторным электродом, удовлетворительно реагирующим на изменения активности водородных ионов в различных растворителях (см. разд. 4-10). Разработаны визуальные индикаторы, которые часто выбирают эмпирически. Кристаллический фиолетовый и метиловый фиолетовый издавна применяют для определения оснований в ледяной уксусной кислоте. Фритц и Гейнер [60[ приводят перечень индикаторов для титрования кислот гидроксидом тетрабутиламмония в пиридине. Кольтгоф, Чантуни и Боуми [61] изучали индикаторы с рК диссоциации в ацетонитриле в интервале от 2 до 30. Для спиртов и водноспиртовых смесей можно применять обычные индикаторы, применяемые для водных растворов, если известен их сдвинутый интервал pH (см. разд. 4-9). Хигучи, Фельдман и Рем [62] изучали поведение 13 индикаторов в ледяной уксусной кислоте. В табл. 6-2 представлены значения рК некоторых индикаторов в различных растворителях [61, 63, 64]. [c.135]

    Диссоциация фенолятов в полярных растворителях была обнаружена при исследовании их растворов различными методами [170, 171, 211—214]. Например, диссоциация 3,5-динптрофеполятов и пикратов щелочных металлов в растворах в ацетонт риле показана в работах [170, 171 [, причем пикрат калия диссоциирован в большей степени, чем салицилат. Диссоциация наблюдалась также при исследовании растворов фенолятов калия и лития в метаноле и диметилсульфоксиде методом ядерного магнитного резонанса протонов фенолят-иона [211[, при измерении электропроводности растворов пикратов натрия и калия в неводных растворителях [212], при изучении ультрафиолетовых спектров растворов щелочных солей некоторых фенолов в диметилформамиде [213]. Диссоциация пикрата лития в нитробензоле исследовалась в работе [258], в присутствии воды в нитробензольном растворе наблюдалось увеличение диссоциации. Апрано и Фуосс доказали [214], что в некоторых растворителях диссоциация пикратов сопровождается ассоциацией диполей растворителя (ацетонитрил, /г-нитроанилин) с пи-крат-иопом. [c.52]

    Определение методом электропроводности констант диссоциации дифенилгуанидина, изомеров фенилендиамина и других оснований в среде метилэтилкетона и смешанного растворителя хлороформ — метилэтилкетон и методом потенциометрического титрования констант диссоциации ряда неорганических и органических кислот в среде метилового, этилового, н-пропилового, н-бутилового и изопропилового спиртов, а также констант ионизации триметилацилоксисиланов и некоторых других соединений показало, что по сравнению с данными, полученными для водных растворов, в метилэтилкетоне р/С этих соединений уменьшается на 2 единицы, а в смешанном растворителе на 3 единицы. Такое действие этих неводных растворителей связано с их меньшей диэлектрической проницаемостью. [c.428]

    Метод принципиально не отличается от титриметрического анализа водных растворов, однако обладает некоторыми существенными преимуществами. Так, возможность широко варьировать свойства применяемых растворителей позволяет подбирать их так, чтобы значения тех или иных физико-химических характеристик компонентов пробы (например, их копстант диссоциации), близкие в водных растворах, заметно различались бы в соответствующем неводном растворителе. Удачный выбор растворителя, обладающего подобным дифференцирующим действием, позволяет раздельно титровать кислоты, основания и соли в составе их сложных смесей. Кроме того, в неводЬых средах можно определять содержание веществ, нерастворимых в воде, разлагающихся ею или образующих в водных растворах стойкие нерасслаивающиеся эмульсии. Неводное титрование особенно эффективно для определения органических соединений различных классов. [c.326]

    Применяя титрование в неводных или полуневодных (в водноорганических) растворителях, можно провести дифференцированное потенциометрическое определение не только многоосновньцс кислот и смесей кислот или оснований, имеющих близкие значения констант диссоциации в водной среде, но и смеси некоторых сильных кислот из-за дифференцирующих свойств различных органических растворителей (см. раздел "Титрование в неводной ср)еде"). [c.70]

    Эквивалентная электропроводность изменяется с температурой. Для большинства электролитов с повышением температуры электропроводность увеличивается, что объясняется повышением подвижности ионов. Однако для некоторых электролитов, особенно в неводных средах, возможно и снижение электропроводности. Это связано с уменьшением диэлектрической проницаемости растворителя. Величина эквивалентной электропроводности зависит также от амплитуды и частоты приложенного электрического поля. Особенно заметно это проявляется в растворах сильных электролитов, где на перемещение ионов оказывает влияние окружающая противоионная атмосфера. При высоком напряжении ион движется значительно быстрее, чем образуется ионная атмосфера, и поэтому отсутствуют, катафоретиче-ские и релаксационные эффекты. Электропроводность растворов в этих условиях резко возрастает. Релаксационное торможение снижается, кроме того, при повышенных частотах (эффект Дебая—Фаль-кенгагена). В растворах слабых электролитов электропроводность также растет с увеличением градиента поля, однако природа этого явления связана с изменением равновесия диссоциации. При высоком градиенте потенциала равновесие сдвигается в сторону образования ионов. [c.225]

    Растворители участвуют в электрохимической реакции только в тех случаях, когда их молекулы способны к диссоциации или образуют водородные связи (пиридин, метанол). К растворителям промежуточной группы, влияющим на реакцию нейтрализации в некоторой степени, относятся ацетон, ацетонитрил, нитрометан и др. Для определения кислот пригодны растворители инертные (бензол, толуол, хлорбензол, метилэтилкетон, ацетон, ацетонитрил), основные и про-тофильные (этилендиамин, н-бутиламин, пиридин, диметилацетамид, диметилформамид, 1,4-диоксан, трет.-бутанол, изопропиловый, этиловый, метиловый спирты, пропиленгликоль). Для определения оснований применяют растворители инертные (н-гексан, циклогексан, диок-сан, четыреххлористый углерод, бензол, толуол, хлороформ, хлорбензол, метилэтилкетон, ацетон, ацетонитрил), кислотные и протогенные (муравьиную, уксусную и пропионовую кислоты, уксусный ангидрид, нитробензол, этиленгликоль, изопропиловый спирт). Растворители, участвующие в неводном титровании, не должны содержать примесей кислот и оснований и воды. [c.302]

    В предыдущей главе был подробно рассмотрен вопрос об электропроводности очень, сильно диссоциированных электролитов в средах с высокой диэлектрической постоянной. С помощью уравнения электропроводности Онзагера можно показать, что поведение большей части таких растворов свидетельствует о полной диссоциации растворенного вещества при малых концентрациях, В неводных средах, согласно теории ассоциации ионов Бьеррума (гл, 1П, 7)., по мере уменьшения диэлектрической постоянной растворителя увеличивается стремление ионов всех электролитов к ассоциации. Экспериментальные результаты, которые будут рассмотрены ниже, подтверждают предетавления Бьеррума. В соответствии с этими представлениями в средах с малой диэлектрической постоянной все электролиты являются частично ассоциированными или слабыми и деление электролитов на сильные и слабые становится до некоторой степени условным. Тем не менее деление электролитов на сильные и слабые в соответствии с тем, являются ли они сильно или слабо диссоциированными в водных растворах, обычно сохраняется при описании свойств электролитов независимо от того, какая среда выбрана в качестве растворителя. [c.182]

    В среде какого-либо ионизирующего растворителя,. например в воде, диссоциация о-мплексов зависит преимущественно от ионной силы раствора,. котор ая влияет на активность реагирующих веществ (ср. разд. 3.2.1). Для неводных сред обычно предпочтительнее определять концентрационные коястанты,. относящиеся к той конкретной среде,. которая характеризуется составам ра.ство-рителя, а если растворитель полярен, то и ионной силой. Экстраполяция экспер.иментальных результатов к бесканечному разбавлению в чистом растворителе может быть сопряжена с некоторыми ТРУДНО1СТ.Я.МИ. [c.151]


Смотреть страницы где упоминается термин Диссоциация в некоторых неводных растворителях: [c.240]    [c.408]    [c.68]    [c.364]    [c.78]    [c.15]    [c.135]    [c.68]    [c.15]    [c.8]    [c.8]    [c.252]    [c.3]   
Смотреть главы в:

Перхлораты свойства, производство и применение -> Диссоциация в некоторых неводных растворителях

Перхлораты Свойства, производство и применение -> Диссоциация в некоторых неводных растворителях




ПОИСК





Смотрите так же термины и статьи:

Неводные растворители

Растворитель н диссоциация



© 2025 chem21.info Реклама на сайте