Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пролин обмен

    Основная масса больщинства аминокислот проходит в реакциях обмена через стадии превращений в глутаминовую или аспарагиновую кислоты или аланин. Содержание амидов и этих трех аминокислот в белках, особенно в белках растений, обычно не менее 30%, а в некоторых белках, например в глиадине пшеницы, превышает 50% общего количества аминокислот. Кроме того, в процессах обмена эти три аминокислоты могут синтезироваться из других аминокислот. Глутаминовая кислота образуется из пролина, орнитина и гистидина, аланин— из триптофана, цистина, серина и т. д. Количество этих аминокислот, объединяемых системой дикарбоновых аминокислот, также составляет не менее 30% аминокислот, входящих в состав белковых молекул. Таким образом, не менее 60% аминокислот, содержащихся в молекуле белка, составляют глутаминовая и аспарагиновая кислоты, их амиды, аланин и аминокислоты, связанные с ними прямыми переходами в обмене веществ. Кроме того, аминогруппы других аминокислот, например валина, лейцина, изолейцина, глицина, в результате переаминирования могут переходить на кетоглутаровую кислоту и образовывать глутаминовую кислоту. Следовательно, доля азота, подвергающаяся обмену через эту систему, еще более увеличивается. Эти данные также показывают центральную роль дикарбоновых аминокислот в обмене веществ. [c.257]


    Связующим звеном в обмене белков и углеводов при переходе первых во вторые и особенно вторых в первые служит ПВК. Являясь главным конечным продуктом дихотомического распада углеводов, ПВК служит исходным веществом для биосинтеза аланина, валина и лейцина. При ее карбоксилировании образуется щавелевоуксусная кислота, из которой строится новая группа аминокислот—аспарагиновая кислота, треонин, метионин, изолейцин и лизин. Вступая в цикл трикарбоновых и дикарбоновых кислот, ПВК используется для биосинтеза а-кетоглутаровой кислоты, из которой образуются глутаминовая кислота, пролин и аргинин. Предшественник ПВК—3-фосфоглицериновая кислота—является исходным соединением для синтеза серина, глицина, цистина и цистеина. [c.470]

    Основная масса азота большинства аминокислот проходит в реакциях обмена через стадии превращений в глютаминовую и аспарагиновую кислоты или а-аланин. Содержание этих трех аминокислот в белках достигает 25—30%. Кроме того, в процессах обмена в животных тканях указанные аминокислоты возникают из других аминокислот. Так, глютаминовая кислота образуется из пролина, оксипролина, орнитина и, возможно, из гистидина аланин образуется из триптофана, цистина и, вероятно, из серина. Количество этих аминокислот, объединяемых системой дикарбоновых аминокислот, составляет также около 25—30% белковой молекулы. В результате около 50—60% белковой молекулы составляют аспарагиновая кислота, аланин, глютаминовая кислота и аминокислоты, связанные с ними прямым переходом в обмене. [c.354]

    Обмен пролина у млекопитающих [c.346]

    Обмен пролина у растений [c.349]

    Важными метаболическими функциями аскорбиновой кислоты являются расщепление тирозина и лизина и гидроксилирование пролина и допамина. Она участвует также в обмене липидов. [c.108]

    Пролин. Исходным соединением для синтеза пролина является глутаминовая кислота, и, таким образом, несмотря на то, что его химическое строение отлично от большинства других аминокислот, он оказывается тесно связанным с обменом широко распространенных кислот и других соединений. При образовании пролина возникают полуальдегид глутаминовой кислоты и пироллин-5-карбоновая кислота  [c.263]

    В таблице 1 и 2 показаны результаты исследования влияния инсектицидов на обмен свободных аминокислот и содержание пировиноградной кислоты в мышечной ткани имаго азиатской саранчи и жуков свекловичного долгоносика. Отмечено снижение содержания пролина от всех изученных инсектицидов и почти во всех случаях [c.24]


    У бактерий найдены ферменты, катализирующие рацемизацию аланина, метионина, глутамата, пролина, лизина и серина, а также эпимеризацию оксипролина и диаминонимелата. Последний фермент, как точно известно, участвует в биосинтезе L-лизина. Кроме того, в обмене пролина ж аланина у некоторых организмов участвуют D-формы, а не L-изомеры. Метаболическая роль других ферментов не столь ясна мон но думать, что они участвуют в синтезе D-аминокислот, используемых для построения клеточных оболочек. [c.446]

    ОБМЕН ПРОЛИНА, ОКСИПРОЛИНА И ОРНИТИНА [c.373]

    СТГ обладает широким спектром биологического действия. Он влияет на все клетки организма, определяя интенсивность обмена углеводов, белков, липидов и минеральных веществ. Он усиливает биосинтез белка, ДНК, РНК и гликогена и в то же время способствует мобилизации жиров из депо и распаду высших жирных кислот и глюкозы в тканях. Помимо активации процессов ассимиляции, сопровождающихся увеличением размеров тела, ростом скелета, СТГ координирует и регулирует скорость протекания обменных процессов. Кроме того, СТГ человека и приматов (но не других животных) обладает измеримой лактогенной активностью. Предполагают, что многие биологические эффекты этого гормона осуществляются через особый белковый фактор, образующийся в печени под влиянием гормона. Этот фактор был назван сульфирующим или тимидиловым, поскольку он стимулирует включение сульфата в хрящи, тимидина—в ДНК, уридина—в РНК и пролина—в коллаген. По своей природе этот фактор оказался пептидом с мол. массой 8000. Учитывая его биологическую роль, ему дали наименование соматомедин , т.е. медиатор действия СТГ в организме. [c.259]

    Таким образом, биофлаваноиды так же, как АК, могут участвовать в обмене коллагеновых субстанций, оказывая активирующее действие на пролиноксидазу в печени животных. Следует отметить, что в опытах на крысах, находившихся на обычном рационе вивария, АК и биофлавоноиды усиливали окисление пролина гомогенатами печени и не влияли на превращение оксипролина. Наряду с этим у,морских свинок, находившихся на С- и Р-недоста-точной диете, АК и препараты витамина Р (чайные катехины и кверцетин) усиливали окисление и пролипа, и оксипролина, однако прцй ерно до того уровня, который наблюдался у свинок, содер- [c.387]

    Пролин и оксипролин. Взаимосвязь этих аминокислот с глютаминовой кислотой в обмене находит множество подтверждений. Образующийся из пролина — пирролин-З-окси-5-карбоксилат окисляется в глютамат при помощи НАД-дегидрогеназы печени. [c.368]

    При помощи опытов по кормлению животных были выяснены взаимосвязи аргинина, пролина и глутаминовой кислоты в обмене веществ. Глутаминовая кислота или пролин могут частично замещать аргинин как фактор, повышающий скорость роста молодых крыс [32]. [c.122]

    Функция печени в углеводном обмене чрезвычайно велика и многогранна. Она способна синтезировать гликоген из глюкозы и неуглеводного материала. Таким материалом может слулсить молочная кислота, глицерин, продукты расщепления- гликокола, аланина, тирозина, фенилаланина, серина, треонина, цистеина, валина, изолейцина, аспарагиновой и глутаминовой кислот, аргинина и пролина. Это так называемые глюкогенные кислоты. Печень может окислять пировиноградную кислоту с образованием АТФ, которая и используется печенью для превращения молочной кислоты в гликоген. [c.84]

    Пока не получено данных, подтверждающих или исключающих участие а-ацетил- или других а-ацилпроизводных глутаминовой кислоты или ее -у-полуальдегида в обмене у млекопитающих. Восстановление -полуальдегида глутаминовой кислоты в пролин в присутствии восстановленного дифосфопиридиннуклеотида было установлено в опытах с препаратами печени [1093]. Активность орнитин-трансаминазы обнаружена как в препаратах из тканей млекопитающих, так и у микроорганизмов (стр. 226). Совокупность данных указывает на наличие в организме животных следующих превращений  [c.348]

    Виткоп и сотрудники [1096, 1097] изучали различные соединения, которые могли бы участвовать в обмене пролина и оксипролина, в том числе 7-оксиорнитин и -у-кетопролин  [c.350]

    Аминокислоты в глюконеогенезе. Обмен белков тесно связан с обменом углеводов через цикл трикарбоновых кислот. Атомы углерода различных аминокислот мотут преобразовываться в ацетил-КоА или промежуточные продукты цикла, т. е. аминокислоты могут служить источником в синтезе углеводов. По способности участвовать в глюконеогенезе аминокислоты делятся на три группы I) гликогенные, 2) кетогеи-иые, 3) гликогенные и кетогенные. Гликогенные — это аминокислоты, которые могут быть предшественниками пировиноградной кислоты, а следователбно, и глюкозы. К гликогенным относятся 15 аминокислот аланин, аргинин, аспарагиновая кислота, аспарагин, глутаминовая кислота, глутамин, глицин, гистидин, метионин, цистеин, пролин.серин, треонин, триптофан, валнн. Кетогенные — это, аминокислоты, при катаболизме которых может образоваться ацетоуксусная кислота. Лейцин — только кетогевяая аминокислота. Четыре аминокислоты (фенилаланин, тирозин, лизин, изолейцин) являются одновременно и гликогенными, и кетогенными. [c.6]

    Рассмотрение обмена аминокислот по биогенетическим семействам [7] показало, что наибольший удельный вес во все изучавшиеся периоды роста и развития яровой вики принадлежит аминокислотам группы аспартата (лизин, метионин, треонин, изолейцин, аспарагиновая и аспарагин), связанным с обменом ок-салоацетата, и глутамата (аргинин, пролин, глутаминовая, глутамин и у-аминомасляная), сопряженным в обмене с а-кетоглута-ратом, т. е. аминокислотам, связанным с циклом ди- и трикар-боновых кислот (см. табл. 3). Содержание этих групп от 28-го до 67-го дней после посева снижается более чем в 3,5—4 раза, что связано с изменением удельного веса азотистых соединений в метаболизме растений по мере роста и развития за счет интенсификации обмена и возрастания удельного веса углеводов [8]. На долю семейств нирувата (аланин, валин, лейцин) и серина (серии, цистеин, цистин, глицин) приходится менее 1/3 общего количества свободных аминокислот. Содержание их в процессе вегетации растений также убывает. [c.91]


    АМИНОКИСЛОТЫ. Производные карбоновых кислот, в которых один или два атома углеводородного радикала замещены аминогруппой NHj. Входят в состав белков, которые являются полимерами А. По числу карбоксильных групп (СООН) различаются moho- и дикарбоновые А., по числу аминных групп различаются MOHO- и диаминовые А. В зависимости от положения аминогрупп различают альфа-, бета- и гамма-кислоты. Получаются синтетически или выделяются из белков. А. занимают центральное место в обмене азотистых соединений в животных, растениях и микроорганизмах, так как служат источником образования белков, гормонов, ферментов и многих других соединений. В настоящее время известно более 90 природных А. В белках содержится лишь около 20 А. Растения и автотрофные микроорганизмы способны синтезировать все входящие в их состав А. Животные могут синтезировать лишь следующие А. аланин, аргинин, аспарагиновую кислоту, глутаминовую кислоту, гистидин, глицин, серин, тирозин, цистеин, цистин и так называемые иминокислоты — пролин и оксишролин. А., которые могут синтезироваться в организме животных, называются заменимыми. Для всех видов животных безусловно незаменимыми являются лизин, метионин, треонин, триптофан, фенилаланин, лейцин, валин, изолейцин. Ряд А. используется в кормлении с.-х. животных. [c.22]

    Образующийся а-кетоглутарат в свою очередь поступает в цикл Кребса, где на этапе сукцинат-тиокиназы синтезируется высокоэнергетический фосфат и в конечном итоге образуется необходимый для цикла Кребса оксалоацетат. Читатель легко заметит, что эта схема идентична соответствующей системе у факультативных анаэробов, и это даже помогает нам понять, почему пролин служит главным метаболитом, используемым для запуска цикла Кребса если он способен проходить через мембрану митохондрии, то его дальнейший обмен может быть эффективно и стехиометрически сопряжен с гликолизом на этапе аланин-аминотрансферазной реакции. Это обеспечивает клетку необходимым выходом высокоэнергетического фосфата даже на тех этапах, когда возникает необходимость в 100-кратном увеличении активности цикла Кребса, и это та самая стратегия, о которой мы уже говорили, рассматривая факультативный анаэробиоз у моллюсков и гельминтов. [c.89]

    Гельферих ввел понятие лигандный обмен , продемонстрировав способность координированных ионом никеля лигандов одного типа обратимо замещаться лигандами другого типа и предложил использовать процессы комплексообразования в хроматографии. Под лигандообменной хроматографией в настоящее время понимают такие хроматографические процессы, в которых взаимодействие разделяемых соединений со стационарной фазой осуществляется путем образования лабильных координационных связей в координационной сфере комплексообразующего иона металла [148], причем катионы металла должны прочно удерживаться стационарной фазой за счет ионных связей, как это имеет место в случае сульфокатионитов и карбоксилсодержащих смол, или, еще лучше, за счет хелатирования стационарными лигандами , например, иминодиацетатными группами. Координационные связи имеют вполне определенную пространственную направленность и фиксируют донорные атомы подвижных лигандов на строго определенных расстояниях. Благодаря столь жестким требованиям , предъявляемым к геометрии сорбируемых соединений, лигандообменная хроматография оказалась исключительно эффективным методом разделения соединений, близких по своим физико-химическим свойствам, в частности геометрических изомеров, гомологов и даже оптических изомеров. Так, рацемические а-аминокислоты были успешно разделены на оптически активные компоненты хроматографией на сорбенте с привитыми группировками -пролина в присутствии ионов меди. Структура сорбционного комплекса , образуемого стационарным лигандом, ионом металла и [c.248]

    Биологическое действие. Аскорбиновая кислота участвует в создании окислительно-восстановительного потенциала ( д) в клетке и тем самым влияет на активность ряда ферментов. EQ системы аскорбиновая кислота дегидроаскорбиновая кислота равен 0,08 В, поэтому аскорбиновая кислота может участвовать в восстановлении цитохромов с и а, кислорода, нитратов. Витамин С защищает гемоглобин, препятствуя его окислению принимает участие в синтезе коллагена на этапе гидроксилирования пролина и лизина в оксипролин и оксилизин (это повышает прочность коллагеновых волокон) способствует биосинтезу хондроитинсульфатов соединительной ткани участвует в обмене тирозина (участвует в биосинтезе адреналина на этапе гидроксилирования дофамина и предохраняет адреналин от окисления участвует в обмене тирозина на этапе окисления й-оксифенилпировиноградной кислоты в гомогентизиновую кислоту и ее окислении) участвует в образовании желчных кислот на этапе 7а-гид-роксилирования предшественника участвует в синтезе фолиевой кислоты и через нее влияет на обмен нуклеиновых кислот и превращения рибозы в дезоксирибозу, косвенно активирует кроветворение и регенераторные процессы, увеличивает всасывание железа. В коре надпочечников содержится много аскорбиновой кислоты, которая используется в биосинтезе кортикостероидных гормонов. Этот процесс усиливается кортикотропином. Витамин С действует как главный водорастворимый антиоксидант и может ингибировать образование нитрозаминов (канцерогены) при приеме пищи. [c.344]

    Глюкагон является и эффектором фермента амило-1,6-глю-козидазы кроме того, повышает основной обмен и потребление кислорода. Он представляет собой однолинейный полипептид, состоящий из 29 аминокислот, по структуре отличен от инсулина глюкагон не содержит пролина, изолейцина и цистина, не имеет метионина и триптофана, концевых аминокислот — гистидина и треонина  [c.202]

    Обмен пролина в организме связан с обменом орнитина. При введении крысам орнитина, меченного дейтерием, было обнаружено наличие в белках тканей меченных дейтерием пролина и глютаминовой кислоты. Как уже указывалось (стр. 352), орнитин при окислительном отщеплении б-амино-группы превращается в полуальдегид глютаминовой кислоты, а затем в глютаминовую кислоту. Полуальдегид глютаминовой кислоты может превратиться в пролин. В этом случае происходит циклизация структуры полуаль-дегида глютаминовой кислоты. С другой стороны, оксидаза пролина (стр. 350) катализирует расщепление пролина с образованием глютаминовой кислоты. Отсюда следует, что обмен пролина, оксипролина, орнитина и глютаминовой кислоты тесно связан друг с другом. Представление об этой связи дает следующая схема  [c.373]

    В растении между корнями и побегами поддерживается постоянный обмен веществами. В некоторых случаях для усиления такого обмена могут образовываться воздушные корни, которые синтезируют аминокислоты (например, у кукурузы), В подземных и воздуш11ых корнях кукурузы происходит синтез аминокислот гистидина, аргииииа, аспарагина, серина, глицина, глутаминовой кислоты, аланина и пролина. Корни ее содерл<ат в [c.311]


Смотреть страницы где упоминается термин Пролин обмен: [c.102]    [c.684]    [c.102]    [c.440]    [c.256]    [c.91]    [c.122]    [c.288]    [c.297]    [c.345]    [c.305]    [c.309]    [c.413]    [c.423]   
Биохимия аминокислот (1961) -- [ c.343 , c.349 ]




ПОИСК





Смотрите так же термины и статьи:

Пролин



© 2025 chem21.info Реклама на сайте