Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молибден фосфат-ион

    Способность молибдена влиять на активность кислой фосфатазы, как считают, связана с образованием молибден-фосфат-ного комплекса с субстратом. Молибден, по данным опытов [c.126]

    Определению не мешают алюминий, барий, кальций, кадмий, кобальт, калий, магний, марганец, молибден (VI), никель, теллур (IV), натрий, цинк, аммоний, бромид, хлорид, нитрат, фосфат, сульфат, цитрат, оксалат и тартрат. [c.383]

    Алюмофосфатный клей — Фосфат 1ые Стекло, ситалл, керамика, металлы (никель, молибден, вольфрам, титан, тантал, ковар, констант), работающие при-60 — + 1400°С. [c.381]


    Двадцать из первых тридцати элементов периодической системы, а также четыре более тяжелых элемента необходимы для жизни. Водород, углерод, азот и кислород присутствуют в организме в виде многих соединений. Натрий, калий, магний, кальций и хлор присутствуют в виде ионов в крови и межклеточных жидкостях. Фосфор в виде фосфат-иона обнаружен в крови эфиры фосфорной кислоты содержатся в фосфолипидах и других соединениях гидроксиапатит содержится в тканях костей и зубов. Сера — важная составная часть инсулина и других белков. Фтор, содержащийся в виде фторид-иона в питьевой воде, необходим для образования прочных зубов и костей он необходим также для нормального роста крыс. Кремний, ванадий, хром, марганец, железо, кобальт, медь, цинк, селен, молибден, олово и иод в небольших количествах необходимы для жизни (микроэлементы). Сведения о некоторых из этих элементов были получены только в опытах с животными (особенно с крысами), однако весьма вероятно, что полученные данные относятся также и к человеку. [c.418]

    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]


    Сподумен ассоциирует со многими минералами. Помимо фосфатов лития (амблигонит, трифилин, литиофилит) и других литиевых минералов — лепидолита и петалита, сподумену сопутствуют кварц, альбит, турмалин, берилл, касситерит, танталит, рутил, апатит, иногда гюбнерит [30], мусковит [82], рубеллит, микроклин [61, 83], молибденит [84], поллуцит [85], колумбит, силлиманит [86], топаз, псиломелан, гадолинит [87] и ряд других минералов [88]. [c.191]

    После разложения пробы в самом начале анализа да-ляют железо (и молибден) экстракцией этилацетатом из солянокислого раствора. В противном случае железо осаждается с торием иодатом, а также прп кислотной обработке фосфатов. Для отделения от рана проводят осаждение тория карбонатом натрия, благодаря чему становится возможным определение урана и тория в одном образце. Вместе с торием осаждаются Са, g, Т1, 2г, Сг, Мп, р. з. э. и некоторое количество А и фосфата. [c.176]

    Титрованию бериллия не мешают магний, цинк, хром, марганец, молибден, уран, кобальт, двухвалентное железо, фосфаты, хлориды, бораты. Кальций и барий в количестве до 40—50 лег также не мешают титрованию. Мешают А1, Ре (П1), ТЬ, 2г, Т], Си. Влияние железа можно устранить при восстановлении его цинком, алюминия — добавлением щавелевой кислоты, циркония, а также кальция и бария при содержании их в анализируемом растворе до 100 мг — комплексообразованием с комплексоном 1П. [c.66]

    Хлорид- и сульфат-ионы замедляют осаждение, при относительно высоком их содержании вводят большой избыток осадителя. В некоторых случаях хлориды и сульфаты предварительно отделяют от фосфатов. Фторид-ионы образуют комплексные ионы с молибденом и поэтому мешают осаждению фосфоромолибдата аммония их переводят в борофтористоводородную кислоту Н(ВГ4) [572] или удаляют. [c.28]

    Окисный молибден-теллур-марганец-фосфат-ный, обработанный H I в присутствии HjO, 440° С, I Oj NH5 Н2О = 1 3 1,29 4,25 [c.522]

    Электролиз с ртутным катодом отделяет многие элементы, вьь деляющиеся на ртути, в частности молибден. Фосфат-ионы остаются в растворе. [c.1083]

    Применяют также ионообменные кристаллы оводнен-ной окиси циркония, окиси титана, аммоний молибден-фосфата, фосфата циркония, вольфрамата и молибдата циркония (последние три в смеси), ферроцианида кобальта и калия. Ионообменные кристаллы используют для разделений щелочных и щелочноземельных металлов, различных анионов, солей урана. [c.140]

    Для окисления Fe (И) в Ре (П1) используют азотную кислоту, а также другие окислители в зависимости от природы анализируемого объекта пероксидисульфат аммония, перманганат калия. Проведению реакции мешает ряд веш,еств. Прежде всего должны отсутствовать анионы кислот, которые дают более прочные ко1 шлексиые соединения, чем роданиды железа фосфаты, ацетаты, арсенаты, фториды, бораты, а также значительные количества хлоридов и сульфатов. Также должны отсутствовать элементы, ионы которых дают комплексные соединения с роданидом кобальт, хром, висмут, медь молибден, вольфрам, титан (III, IV), ниобий, палладий, кадмий, цинк, ртуть. [c.151]

    Минералы (от лат. minera — руда)—природные тела, приблизи тельно однородные по химическому составу и физическим свойствам. В настоящее время известно более 2000 минералов. По химическому составу минералы представляют собой различные классы веществ самородные элементы (алмаз,, графит, сера, золото, пла-тина, серебро, медь, ртуть и др.) сульфиды металлов и неметаллов (пирит, галенит, молибденит, кииоварь, антимонит, медный колчедан, арсенопирит и др.) соли мышьяковой, сурьмяной и других кислот галоидные соединения оксиды и гидроксиды (кварц, пиролюзит, корунд, боксит и др.) карбонаты, сульфаты, нитраты, фосфаты, силикаты и др. М. входят в состав горных пород, руд, метеоритов и др. [c.83]

    Отделение молибдена от рения может быть осуществлено экстракцией эфиром из солянокислых растворов, содержащих роданид, без добавки восстановителя [1106]. В отсутствие Mo(VI) рений в этих условиях не экстрагируется эфиром. При совместном присутствии рений частично вместе с молибденом переходит в эфир. Однако в присутствии Fe(HI) переход рения в эфирный слой прекращается. Экстракция кобальта устраняется добавкой Zn l2. Хром и никель образуют окрашенные соединения, но не экстрагируются эфиром. Фториды, тартраты, оксалаты и фосфаты остаются в водной фазе. Для количественного выделения 30 мг Мо из 25—50 мл раствора достаточно однократной экстракции 10 мл эфира. [c.207]

    Шестивалентный молибден, находясь в форме фосфорномолибденовой кислоты, легко воостанавливается ионами двухвалентного железа с образованием молибденовой сини. Это было использовано для разработки фотометрического метода определения молибдена (стр. 226). Показана возможность [262, 264] фотометрического титрования солей фосфорномолибденовой кислоты раствором соли двухвалентного железа с образованием фосфорномолибденовой сини. Установлено, что при избытке фосфата образуются бесцветные соединения, которые не восстанавливаются до молибденовой сини. [c.95]

    При определении серы в фосфоре чувствительность при потоке 0,87-10 нейтр1см -сек и времени облучения 20 час. для навески фосфора в 1 0 составляет для серы 2-10" %, относительная ошибка 10—20% [518]. Метод нейтронной активации применен для определения серы на бумажных хроматограммах [1224], 10" % S в мьш1ьяке [1149], в молибдене [762] и в чистой меди [106]. В последнем случае используют реакцию (и, /)) Р. Пробу и эталоны (содержащие элементную серу) облучают 5 час. в нейтронном генераторе с выходом нейтронов 8-10 нейтрЫм -сек. После разложения пробы концентрированной азотной кислотой в присутствии фосфата как носителя осаждают фосфоромолибдат аммония и измеряют Р-активность Р на сцинтилляционном счетчике. Ошибка определения (1,5—2) 10" % S составляет 15—20% [106]. Методика может быть также применена для определения серы в цинке, никеле, магнии, кобальте, щелочных и щелочноземельных металлах и РЗЭ. [c.156]


    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    Кальций осаждают в виде фосфата [481, 1412], молибдата [32, 1016] или вольфрамата [1261]. Осадок отделяют фильтрованием, растворяют в кислоте и определяют фосфат-ион, молибден, вольфрам соответствующими методами. Для осаждения кальция применяют лоретин, затем фотометрируют лоретинат железа [970]. [c.100]

    Описан метод определения фосфора в вольфрамовом ангидриде с использованием Мо [455, 457]. Навеску растворяют в горячем 20%-ном растворе КОН, фильтруют. Из фильтрата осаждают и отделяют фосфаты действием Са (N0g)2. Фосфаты на фильтре растворяют горячим раствором HNOg и вторично осаждают фосфат. Осадок промывают, растворяют в горячей HNOg, разбавляют, вводят радиоактивный молибден в виде К2 Мо04, экстрагируют ФМК изобутанолом, затем смесью изобутанола и хлороформа, и объединенном экстракте определяют активность Мо. [c.65]

    Применение методов, основанных на измерении рассеяния света, достаточно ограничено прежде всего потому, что на измеряемый сигнал сильно влияет размер частиц. Поэтому необходимо строгое соблюдение идентичности условий построения градуировочного графика и анализа исследуемого раствора. Можно сказать, что и нефелометрия, и турбоди-метрия могут быть полезными для селективных аналитических реакций, в результате которых образуется твердое соединение. Описаны методики определения аммиака иодидом ртути (реактив Несслера), фосфата в виде малорастворимого соединения с молибденом и стрихнином, сульфата бария с пределами обнаружения десятые-сотые доли мшфограмма в миллилитре и др. [c.317]

    Присутствие хлоридов, сульфатов, фосфатов в титруемом растворе исключается, так как эти ионы также образуют малорастворимые осадки с закисной ртутью. Равным образом исключается применение органических кислот — винной, щавелевой или лимонной, которые иногда применяются для связывания вольфрама (VI) в комплексное соединение с тем, чтобы в его.присутствии определять молибден (например, при колориметрических определениях) с этими кислотами ртуть также образует осадки. Что касается катионов, то их влияние на определение молибдена и вольфрама обусловлено растворимостью соответствующих вольфраматов и мо-либдатов в данной среде. Так, например, в присутствии бария определение вольфрама делается практически невозможным, так как вольфрамат бария отличается весьма малой растворимостью в разбавленных кислотах и, следовательно, увлечет вольфрам в осадок до титрования, а более сильное подкисление приведет, как уже упоминалось, к растворению вольфрамата ртути. [c.193]

    Активные катализаторы (молибден, олово, вольфрам, рений, уран, ванадий, хром, никель, кобальт) смешивают с вялодействующими катализаторами. например сульфидами, фосфидами, фосфатами (марганца, железа, меди) [c.34]

    Фотометрический метод определения фосфора в стали основан на восстановлении фосформолибденовой кислоты Ре(П) и МагЗОз до так называемого молибденового синего — ярко окрашенного синего комплекса, в котором молибден находится в более низкой степени окисления, чем в молибдате. Для этого после окисления до фосфата при помощи КМПО4 и восстановления полученного МпОа азотнокислый раствор нейтрализуют аммиаком, раствор слабо подкисляют НС1 и Ре(П1) восстанавливают НагЗОз при нагревании. Раствор дополнительно подкисляют НС1, охлаждают, чтобы предотвратить образование гетерополикислот, как в случае кремния и мышьяка, и к нему медленно по каплям прибавляют определенный объем раствора молибдата аммония. Полученный синий раствор переливают в мерную колбу, доливают до отметки и фотометрируют. Концентрацию фосфора находят по предварительно построенной калибровочной кривой. [c.477]

    Молибден(У1) легко образует с фосфатами и силикатами гетерополикислоты, нашедшие широкое применение в фотометрическом определении малых количеств фосфора [11] и кремния [8П. Восстановление этих гетеро-поликислот до соответствующих синей значительно повышает чувствительность и избирательность определения данных элементов. Однако восстановители обладают рядом недостатков. При использовании Sn lg оптическая плотность растворов изменяется во времени и для получения удовлетворительных результатов необходимо измерять ее через строго определенные промежутки времени после добавления Sn lj [116, 117, 141, 263, 298]. [c.55]

    Спектрофотометрическим методом было показано, что в азотнокислой среде вольфрам соосаждается хуже, чем в солянокислой. Спектральным методом было установлено, что для осаждения 0,01 % н меньших концентраций вольфрама по отношению к молибдену достаточно добавлять 2,5 мл 0,2 %-ного раствора двузамещенного фосфата аммония. [c.264]


Смотреть страницы где упоминается термин Молибден фосфат-ион: [c.272]    [c.272]    [c.272]    [c.20]    [c.426]    [c.38]    [c.185]    [c.162]    [c.38]    [c.189]    [c.175]    [c.305]    [c.83]    [c.268]    [c.25]    [c.140]    [c.268]    [c.25]    [c.458]    [c.418]    [c.324]   
Качественный анализ 1960 (1960) -- [ c.466 ]




ПОИСК







© 2024 chem21.info Реклама на сайте