Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Медь в магниевых сплавах

    В качестве примера внутреннего электролиза рассмотрим определение содержания меди в магниевом сплаве. [c.451]

    Летучесть — 0,76 мг/м . Защищает от коррозии изделия из стали, алюминия, его сплавов, никеля, хрома, кобальта, а также из стали фосфатированной и оксидированной. На меди и ее сплавах образует окисную пленку. Не защищает и в ряде случаев вызывает коррозию изделий из цинка, кадмия, серебра, магниевых сплавов. Чугун требует дополнительной консервации маслами или смазками. Срок действия ингибитора более 10 лет [c.107]


    На практике получили распространение электролизеры ящичного типа с параллельно уложенными электродами. Для электролита из КР-2НР катоды выполняют из мягкой стали, а для электролита КР-НР — из меди или магниевого сплава. Корпус ванны снабжен рубашкой. Аноды состоят из угольных блоков и подвешены к крышке электролизера. Они окружены колоколом, с помощью которого обеспечивается собирание фтора. Колокол опущен в электролит на 100—150 мм и исключает попадание фтора в катодное пространство. Расход НР пополняется через специальный трубопровод. На рис. ХУП-П показан такой электролизер. [c.537]

    Магниевые электроды представляют собой тонкие пластины магниевого сплава марки МА-8 и не требуют специальной подготовки. Электроды из хлорида меди(1) изготавливают по технологии, сущность которой сводится к приготовлению пасты, состоящей из чистого хлорида меди(1) и связующего (раствор полистирола в толуоле), и намазке ее на сетчатый медный каркас электрода. [c.248]

    Коррозионная стойкость на воздухе и в электролитах большинства материалов с матрицами из алюминия и магния в общем ниже, чем у гомогенных сплавов. Особенно она понижается, когда воздействию коррозионной среды подвергаются торцы материала. При этом происходит усиленное растворение матрицы вследствие ускоряющего воздействия волокон и других упрочняющих фаз, являющихся катодами. Для защиты от коррозии следует применять те же методы которые используются для обычных алюминиевых и магниевых сплавов с исключением контакта с коррозионной средой торцов материала. Коррозионностойкими материалами могут считаться композиционные материалы с матрицами на основе титана, свинца, меди. Особые преимущества могут быть достигнуты по характеристикам усталости и по торможению развития коррозионных трещин. [c.79]

    Отливки цз алюминия и магния чистые и слаболегированные Штамповки (чистые и низколегированные) сталь, алюминий, магний, серебро, никель, вольфрам, титан Неметаллы стекло, фарфор Пластики (полистирол, оргстекло, резина) Отливки алюминиевые и магниевые сплавы, низколегированная сталь, чугун со сфероидальным графитом Штамповки медь, латунь, бронза, металлокерамика [c.278]

    Жаропрочные магнитные сплавы с редкоземельными металлами применяются для отливки дета лей сверхзвуковых реактивных самолетов, управляемых снарядов и оболочек искусственных спутников Земли [71. Имеются сведения [31 о промышленном использовании сплава 95% мишметалла и 5% магния для отливки заготовок деталей с высокими механическими характеристиками. В производстве легких авиационных магниевых сплавов используется неодим [8]. 0,5—6% Рг, 0(1 или Ей повышает стойкость хромовых сплавов к окислению [9]. Сплавы 5т-Со устойчивы против размагничивания и используются в аэрокосмическом оборудовании. Разработан состав сплавов РЗЭ с кобальтом для постоянных магнитов [3]. РЗЭ вводят в припои на основе меди для улучшения структуры припоев. [c.87]


    Титрование с ксиленоловым оранжевым описано для определения алюминия в сталях [712], в титановых сплавах [1173], ферротитане [63], магниевых сплавах [429], алюминиевой бронзе [260], в сплавах никеля с алюминием [263], в бинарных сплавах алюминия с медью [345], с цирконием [434], железом [345], с титаном [665], в тройных сплавах с цирконием и никелем [295], в бокситах, нефелиновых рудах и концентратах [16, 71, 558, 877], каолине [147, 680], в различных минералах, рудах и горных породах [23, 71, 166, 229, [c.69]

    Чугуны серый СШ., С17 Магниевые сплавы 16 50% Си Медь [c.24]

    ГОСТ 2856-68]. Литье Магниевый сплав (Ме А1 2—6) Медь [c.15]

    Магниевые сплавы Mg-3 А1 Mg —6 А1 Mg—10 А1 Mg —20 А1 Mg —30 А1 Медь [c.82]

    Для выполнения полного анализа алюминиевых и магниевых сплавов 20—30 мг стружки или опилок помещают в пробирку, прибавляют 3—4 капли воды и по каплям концентрированную соляную кислоту до прекращения реакции. Затем добавляют 1—2 капли концентрированной азотной кислоты для растворения меди и других компонентов сплава. Смесь нагревают до полного растворения и прекращения выделения бурых окислов азота, раствор разбавляют 1—2 мл воды и далее анализируют по основной схеме. [c.131]

    Бериллий входит в состав многих сплавов в качестве легирующей добавки. Для приготовления специальных сплавов используется основная часть бериллиевой продукции. Важнейшими сплавами бериллия являются сплавы на основе меди (бериллиевые бронзы). Содержание бериллия в бронзах может изменяться от долей процента до 2,5%, а в лигатурах —до 8%. Очень распространены алюминиевые и магниевые сплавы с присадками бериллия от 0,005 до 0,5%. Бериллий является также компонентом в сплавах с Fe, Ni, Со, Ti и входит в состав легированных сталей, например хромоникелевых и хромомолибденовых. Содержание бериллия в этих сплавах колеблется в широких пределах — от 0,001 % до нескольких процентов. Определение бериллия в сплавах производится, в зависимости от содержания, весовыми и колориметрическими методами после отделения основы и мешающих элементов или с введением маскирующих средств. Широко применяются спектральные методы анализа сплавов [442—473.  [c.173]

    Исследование сварки меди с магниевым сплавом показало, что при отклонении от оптимального режима частота, соответствующая минимуму суммарного спектра донного сигнала, уменьшилась с 4,62 до 4,33 МГц. [c.629]

    Алюминий определяют обычно обратным титрованием с использованием в качестве индикаторов ПАР [684, 708], ПАН-2 [30, 283, 379, 592, 684, 744], комплекса меди с ПАН-2 [615, 616], комплексоната меди с ПАН-2 [458, 459, 523, 609, 852]. Отмечается [684], что оптимальную кислотность титрования (pH 3,7) удобно создавать гидротартратом калия, препятствующим гидролизу алюминия. Алюминий определяют в марганцевых рудах [616], основных шлаках [523], хромовых рудах и огнеупорах [615], металлургических шлаках [283, 379], сталях [852], жаропрочных сплавах [592], магниевых сплавах [458], продуктах титанового производства [459] и котельных накипях [30]. [c.168]

    Определение алюминия в магниевых сплавах [458]. Не мешают компоненты магниевого сплава — магний и марганец. В присутствии цинка определяют сумму цинка с алюминием титрованием при pH 3 с использованием в качестве индикатора комплексоната меди с ПАН-2 и вводят поправку на цинк, используя пересчетный коэффициент с цинка на алюминий 0,41. [c.169]

    Сталь, магниевые сплавы, медь, латунь и т. п. требуют специальных методов обработки. [c.280]

    Магниевые сплавы в напряженном состоянии корродируют с КР в растворах хлоридов, сульфатов, карбонатов, хроматов. Сплавы меди с цинком, оловом, алюминием разрушаются в присутствии паров аммиака. [c.139]

    Для деталей из меди и медных сплавов осаждают хром по никелевому подслою. Детали из цинковых, алюминиевых, магниевых сплавов покрывают хромом после нанесения многослойного покрытия. [c.272]

    Клей БФ-2 Для склеивания Стали, алюминиево-магниевых сплавов, меди, текстолита, стеклопластиков, оргстекла. кожи, керамики, древесных материалов между собой и в различных сочетаниях. Как подслой иа металле прн склеивании металлов с неметаллическими материалами клеем ВИЛМ-БЗ [c.32]

    Для протекторов при защите подземных сооружений часто используют магний. Чистые металлы - магний, алюминий, цинк - не получили практического применения для изготовления протекторов, так как магний имеет сравнительно низкую токоотдачу, а алюминий и цинк склонны к пассивации. Введение добавок позволяет получить сплавы с более отрицательными, чем у основного металла, потенциалами, которые могут оставаться активными, равномерно разрушаться. В магниевые сплавы для протекторов вводят добавки алюминия, цинка и марганца. Алюминий улучшает литейные свойства сплава и повышает механические характеристики, но при этом немного снижается потенциал. Цинк облагораживает сплав и уменьшает вредное влияние таких примесей, как медь и никель, позволяя повышать их критическое содержание в сплаве. Марганец вводят в сплав для осаждения примесей железа. Кроме того, он повышает токоотдачу и делает более отрицательным потенциал протектора. Основные загрязняющие примеси в сплаве - железо, медь,, никель, кремний, увеличивающие самокоррозию протекторов и снижающие срок их службы. [c.158]


    Г идрогенизация фенола непосредственно в циклогексанол Медь-магниевый и никель-маг-ниевый сплавы 209 1 [c.150]

    Работа 3. Определение меди в магниевом сплаве методом внутреннего электролиза [c.340]

    Лигатуры. В черной металлургии цирконий применяют как рас-кислитель и деазотизатор сталей. По эффективности действия он превосходит Мп, 81, Т1. В сталь его вводят в виде ферроциркония (40% 2г, 10% 51, 8—10% А1), ферросиликоциркония (20—50% 2г, 20— 50% 51) и в виде других сплавов. Легирование сталей цирконием (0,8— 0,25%) улучшает их механические свойства и обрабатываемость. Добавка циркония к алюминиевыми магниевым сплавам (до 0,8%) повышает их механическую прочность и ковкость. Цирконий делает более прочными жаростойкими медные сплавы при незначительном уменьшении электропроводности. Электропроводность сплава меди с 0,9% Сс1 и 0,35% 2г 78% от электропроводности чистой меди он применяется в электродах контактной сварки. [c.308]

    Были испытаны и другие катализаторы, например хромоникелевая сталь (18% хрома, 8% никеля), нихром, феррохром, кон-стантан. Маиганин-никель-медь-магниевый сплав давал 19,56% ванилина при обработке 33 мл отработанного сульфитного ще- [c.626]

    В современных ТРД смазочные масла соприкасаются с металлами и их сплавамп (сталью, медью, алюминием, свинцом, бронзой, свинцовистой и фосфористой, латунью, алюминиевыми и магниевыми сплавами и т. д.), на которые наносят оксидпровапием, анодированием, кадмированием, плакирова-ппем и другими способами защитные пленки. [c.463]

    Марганец входит в состав многих сплавов. Сплав манганин состоит из марганца, меди и никеля. Манганиновая проволока с изхменением температуры почти не меняет электрическую проводимость, что используется при изготовлении катушек сопротивления. Сплавы меди с марганцем применяют для изготовления тур-б шпых лопаток, а марганцовые бронзы — при производстве пропеллеров. Марганец содержат многие алюминиевые п магниевые сплавы. Гальванические покрытия марганцем применяются для защиты изделий от коррозии. [c.207]

    Оксидное Сталь, медь и ее сплавы, магниевые сплавы Защитные свойства невысокие, повышаются при обработке покрытий маслами, лаками, гидрофобизирующими жидкостями Межоперационнор хранение декоративная, отделка и защита рт коррозии (медь, магний и их сплавы) [c.373]

    При катодной плотности тока 600 А/м анодной 700—800 А/м выход по току составляет 80%. Для автоматической подачи фтористого водорода по мере его израсходования во время электролиза некоторые электролизеры устанавливают на весы. Сложность проведения высокотемпературного процесса заключается в трудности поддержания температуры в довольно небольшом интервале, что осуществляется при помощи внешнего обогрева и охлаждения. В отдельных конструкциях электролизеров использовано особое устройство для охлаждения при помощи дифенилоксида, температура кипения которого (259°С) ненамного превышает температуру электролита в электролизере. Когда температура дифенилоксида поднимается до 260°С, он начинает испаряться из стальной рубашки, находящейся в электролизере. Пары его поступают в конденсатор, охлаждаемый водой, откуда конденсат дифенилоксида возвращается обратно. Некоторые электролизеры работают с принудительной циркуляцией электролита, что позволяет легче регулировать температурный режим и работать при несколько более высокой плотности тока. Аноды для гидрофторидного процесса вьшолняют из графита, а катоды из магниевого сплава (М2Ч-2%Мп) или из меди. [c.266]

    Оксидное анодизаци- онное Алюминий и его сплавы медь и ее сплавы магниевые сплавы титан и его сплавы Твердость покрытия на алюминии и его сплавах 28-44 НВ, электроизоляционные покрытия имеют пробивное напряжение до 600 В электрическая прочность возрастает при пропитке покрытия лаками эматале-вые пленки на алюминии и окисные на титане обладают износостойкими свойствами Защита от коррозии, придание электроизоляционных свойств получение светопоглощающей поверхности (медь), защита от задиров при трении (титан), грунты под окраску [c.373]

    Даже у эффективных магниевых сплавов и при благоприятных условиях значения не превышают 0,55—0,65. Причиной большой доли собственной коррозии является выделение водорода, образующегося по катодной параллельной реакции согласно уравнению (7.56), или же развитие свободной коррозии частиц, отделенных от протектора при сильно трещиноватой его поверхности (см. раздел 7.1.1 [2—4, 19— 21]). Магниевые протекторы изготовляют в основном из сплавов. Содержание железа и никеля не должно превышать 0,003 %, так как при этом их свойства ухудшаются. Влияние меди не является однозначным. Верхним пределом ее содержания считается 0,02 %. При добавке марганца железо выпадает из расплава и при затвердевании становится безвредным ввиду образования кристаллов железа с оболочкой из марганца. Кроме того, марганец повышает токоотдачу (выход по току) в хлоридсодержащих средах. Содержание марганца должно быть не менее 0,15 %. Алюминий облегчает удаление вредного железа благодаря выпадению вместе с марганцем. Впрочем, чувствительность к повышенным содержаниям железа (более 0,003 %) в присутствии алюминия заметно повышается. При добавке цинка коррозионное разъедание становится более равномерным, к тому же снижается чувствительность к другим загрязнениям. Важнейшим магниевым протекторным сплавом является сплав А2 63, который удовлетворяет также и требованиям стандарта военного ведомства США М1Ь-А-21412 А [22]. [c.186]

    Еще в 30-х годах было обнаружено [152], что при уменьшении давления воздуха долговечность металлов возрастает. В вакууме долговечность алюминия по сравнению с воздухом при атмосферном давлении повышается в 5-10 раз [153]. При этом возрастает также предел выносливости. Аналогичные результаты получены на меди [154]. Долговечность железа повышается в вакууме примерно на порядок [155], в то время как предел выносливости такой же, как при испытании в воздухе. При высоких уровнях циклических нагрузок ( а = 950 МПа) долговечность молибдена в вакууме и в воздухе одинаковая [156], по мере уменьшения напряжений в вакууме долговечность заметно возрастает, но предел вьн носливости в обоих случаях одинаковый. Качественно подобная картина наблюдается для магниевых сплавов МА2 - 1, МА15, МА12. [c.99]

    По характеру изменения хим. состава обрабатываемого изделия л.-т. о, можно разделить на диффузионное насыщение неметаллами или металлами и диффузионное удаление элементов (чаще всего углерода в слабоокислит. среде или водорода в вакууме). Разновидности Х.-т. о. цементация- насыщение гл. обр. стальных изделий углеродом азотирование - насыщение азотом стали, сплавов на основе Ti и тугоплавких металлов оксидирование-окисление поверхностных слоев алюминиевых и магниевых сплавов цианирование и нитроцементация -одновременное насыщение углеродом и азотом стальных (чудных) изделий соотв. из расплава солей и газовой фазы борирование - насыщение бором изделий из стали, сплавов на основе Ni, Со и тугоплавких меташюв силициро-вание - насыщение кремнием алитирование - насыщение алюминием гл. обр. сталей, реже чугунов и сплавов на основе Ni и Со хром ирование и цинкование-насыщение стали соотв. хромом и цинком меднение-насыщение медью изделий из стали. Из всех видов Х.-т. о. наиб, широко используют насыщение стали углеродом и азотом. Углерод и азот быстро диффундируют в железо, образуя при этом твердые р-ры, карбидные и нитридные фазы, резко отличающиеся по физ.-хим. св-вам от железа. [c.230]

    В зависимости от состава электролита корпус ванны выполняют из монель-металла, магниевого сплава, хромоникелевой стали, никеля и его сплавов или стали. Катоды для гидрофторидных ванн делают из меди или магниевого сплава (Mg+2% Мп), а для три-фторидных — из мягкой стали. Аноды изготавливают из угольных или графитовых блоков, которые размещаются в колоколах-диаф-рагмах. [c.269]

    Еще одним представителем бинарных гидридобразующих сплавов являются медно-магниевые сплавы. Композиционно они имеют очень широкие пределы (0,09—0,83 массовых долей меди и 0,17—0,91 массовых долей магния). Наилучшими сорбционными характеристиками (около 0,03 массовых долей) обладает сплав, состоящий из 0,56 массовых долей меди и 0,44 массовых долей магния и соответствующий формуле Mg2 u [71]. [c.84]

    Кадмирование применяется также для защиты стальных и медиых деталей в целях предупреждения контактной коррозии алюминиевых и магниевых сплавов. [c.181]

    Коррозионное растрескивание магниевых сплавов происходит в водных средах при комнатной температуре. В основном оно наблюдается в деформируемых сплавах. Данных о коррозионном растрескивании литейных сплавов крайне мало, и они носят достаточно противоречивый характер. Основным легирующим элементом, определяющим склонность магниевых сплавов к коррозионному растрескиванию, является алюминий. Основным деформационным механизмом, ответственным за коррозионное растрескивание магниевых сплавов, является действие внутренних остаточных напряжений в материале. В качестве примера, подтверждающего объективность этих тезисов, можно рассмотреть проблему коррозионного растрескивания промышленных. сплавов системы Mg—Л1—2п. Склонность этих сплавов к стресс-коррозии наблюдается при содержании в них алюминия в диапазоне концентраций 3-10 % и отношении А1 / 2п > 2. Чувствительность к коррозионному растрескиванию увеличивается с повышением в сплаве содержания алюминия. Введение в эти сплавы железа или меди еще более повышает склонность сплавов к стресс-коррозии. Магниевые сплавы, не содержащие алюминия, по-видимому, не склонны к коррозионному растрескиванию в большинстве коррозионноактивных сред. Однако в ряде безалюминиевых сплавов склонность к коррозионному растрескиванию может наблюдаться в определенных средах. Так, сплавы М —Мп, легированные Се (при его содержании не ме- [c.79]

    Исследования показали, что химической коррозии подвергаются главным образом детали топливных агрегатов реактивных двигателей, изготовленные из сплавов меди, и детали, имеющие кадмиевые покрытия. Из сплавов меди наименее устойчивой является бронза ВБ-24, из которой изготовляются ротора некоторых топливных насосов. Образующиеся под влиянием меркаптанов продукты коррозии этой бронзы быстро забивают топливные фильтры [1181. В реактивных топливах коррозии подвергаются также медь М-1 и М-3, свинец С-2, дюралюминий Д1Т, свинцовистая бронза, медно-трафитовый сплав и магниевый сплав МЛ-5. Интенсивность химической коррозии возрастает при увеличении нагрева топлива, степени перемешивания, продолжительности его контакта с металлом и повышении объема контактирующего топлива [119—121]. [c.35]

    Такой подход к прогнозу защитных свойств нефтепродуктов, в том числе ПИНС, может дополнять и углублять систему моделирования и оптимизации функциональных свойств, но не может заменить принципов этой системы, основанной на механизме действия,защитных продуктов. В соответствии с этой системой число методов и показателей, характеризующих защитные свойства ПИНС, соответственно 7 и 9 (см. табл. 9). Причем методы 29 и 30 характеризуют защитные свойства пленок ПИНС в условиях повышенной влажности и температуры (ДФС ), методы 31, 32 и 33 — в условиях диоксида серы и морской воды (ДФСи), а методы 34 и 35 — защитные свойства в условиях соляного тумана (ДФС15). Лабораторные испытания защитных свойств масел, смазок и ПИНС проводят согласно ГОСТ 9.054—80 на образцах выбранных металлов сталь — Ст. 10, Ст. 3, Ст. 45, Ст. ЗОХГСА и др. медь —М-1, М-2, МО алюминиевые сплавы — АК-6, Д-1, Д-16, Д-19 и др. чугун магниевые сплавы —МЛ-5, МЛ-10, МЛ-11, МЛ-19, МА-1, МА-2, МА-5 и т. п. Для испытаний используют пластинки размером 50Х Х50Х4 мм, а также специальные детали, сборки, подшипники. [c.102]


Смотреть страницы где упоминается термин Медь в магниевых сплавах: [c.141]    [c.141]    [c.333]    [c.514]    [c.80]    [c.80]    [c.111]    [c.205]    [c.167]   
Химико-технические методы исследования (0) -- [ c.224 ]




ПОИСК





Смотрите так же термины и статьи:

Магниевые сплавы

Магниевый ИСМ

Медь сплавы



© 2025 chem21.info Реклама на сайте