Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Контактное окисление аммиака условия

    Контактное окисление аммиака — процесс экзотермический. В зависимости от условий между аммиаком и кислородом могут протекать следующие реакции  [c.100]

    Вопрос о термическом режиме реагирующей твердой поверхности и критических условиях ее воспламенения и потухания имеет практическое значение как для процесса горения угля [1, 61, так и для некоторых сильно экзотермических гетерогенно-катали-тических процессов. Таковы, например, контактное окисление аммиака в азотную кислоту и спиртов в альдегиды или кетоны. При этих процессах большие разогревы поверхности вполне допустимы и никакого вреда не приносят поэтому данные процессы всегда проводятся на верхнем температурном режиме, в диффузионной области, при больших разностях температур поверхности и газа. [c.419]


    Выделяющаяся при этом окись азота вновь окисляется. Контактное окисление аммиака — процесс экзотермический. В зависимости от условий между аммиаком и кислородом могут протекать следующие реакции  [c.343]

    В России И. И. Андреев, независимо от других исследователей, изучал возможность получения азотной кислоты контактным окислением аммиака и разработал этот технологический процесс. За исключительно короткий промежуток времени он исследовал весь процесс получения азотной кислоты из аммиака сначала в лабораторных, а затем в полузаводских условиях и определил зависимость выхода окиси азота на платине от скорости газа, температуры и состава аммиачно-воз-душной смеси. [c.14]

    Производство азотной кислоты контактным окислением аммиака, осуществленное впервые в промышленных условиях В. Оствальдом и И. И. Андреевым, явилось большим достижением в развитии химической промышленности. Способ получения азотной кислоты из аммиака оказался более рентабельным, чем прямое взаимодействие атмосферного азота с кислородом. [c.15]

    Ознакомление с сущностью процесса катализа и механизмом реакций контактного окисления аммиака дает основу для выбора условий проведения всего процесса (катализатора избирательного действия, температуры, концентрации аммиака, скорости газа, конструкции конвертора и т. д.). [c.39]

    В зависимости от состава -катализатора м условий контактного окисления аммиака получают элементарный азот, окись и закись азота по следующим суммарным уравнениям  [c.162]

    Контактное окисление аммиака — процесс экзотермический. Между аммиаком и кислородом в зависимости от условий могут протекать следующие экзотермические реакции  [c.81]

    Теоретические основы окисления аммиака. Окисление аммиака представляет собой сложный физико-химический процесс. В зависимости от характера катализатора и условий, в которых протекает окисление, получаются различные продукты окисления окись азота, элементарный азот, а в некоторых случаях и закись азота, составляющие так называемые нитро з н ы е газы. Контактное окисление аммиака протекает согласно следующих реакций  [c.97]

    Аммиак может, как известно, окисляться как в отсутствие катализаторов, так и прн их участии. В отсутствие катализаторов всегда образуется только элементарный азот. Поэтому возникает вопрос, не образуется ли элементарный азот и при контактном окислении аммиака в результате реакции, протекающей в объеме катализаторной зоны, а не на поверхности катализатора Но это предположение должно быть отвергнуто потому, что реакция в объеме протекает при температуре контактного окисления аммиака гораздо медленнее, чем реакция на катализаторе, а также в связи с тем, что направление реакции не изменяется при наличии промежутков между сетками (при одинаковых прочих условиях). Таким образом, как окись азота, так и элементарный азот являются продуктами каталитических реакций. [c.349]


    В качестве примера сложной необратимой реакции выбрано контактное окисление аммиака, протекающее с образованием окиси азота, закиси азота и молекулярного азота. Выход продуктов зависит от условий, при которых проводится реакция. [c.41]

    ЩИХ технику реакций в нужном направлении и при условиях, наиболее приемлемых для заводских масштабов. Такие важнейшие процессы химической технологии, как синтез н окисление аммиака, контактное получение серной кислоты и многие другие, всецело основаны на результатах физико-химического изучения этих реакций. Велико и постоянно возрастает значение физикохимических исследований в развитии химической промышленности (основной органический синтез, нефтехимия, производство пластических масс и химического волокна и др.). Важную роль играют физико-химические исследования и для многих других, отраслей народного хозяйства (металлургии, нефтяной промышленности, производства строительных материалов, сельского хозяйства), а также для медицины и др. [c.13]

    Пример. Для условий предыдущей задачи найти состав газа после окисления аммиака. Воздух в контактный аппарат поступает насыщенным парами воды при 30° С. [c.238]

    Это условие приобретает особенно важное значение, когда карбид применяется для получения газа ацетилена и цианамида кальция, предназначенного для производства азотной кислоты посредством контактного окисления выделенного из него аммиака-Ацетилен выделяется при действии воды на карбид кальция, как показывает следующее равенство  [c.86]

    Это означает, что максимальное число взрывов в контактных аппаратах (без разрушения оболочки), которого можно ожидать, составит не более трех на одну тысячу аппаратов за один год эксплуатации. Для расчета вероятности взрыва, сопровождающегося разрушением корпуса аппарата, можно использовать план (NUT), согласно которому испытывается N объектов (jV=>16), отказавшие объекты не заменяются для испытания, а испытания прекращаются по истечении времени Т. Для приведенных выше конкретных условий работы контактных аппаратов окисления аммиака (в отсутствие отказов /Пр=0) расчетом, проведенным по ГОСТ 11.005—74, установлено, что с разрушением корпуса аппарата может произойти не более одного взрыва в год из миллиона работающих контактных аппаратов. Таким образом, на основании статистических сведений об авариях в течение длительной эксплуатации агрегатов окисления аммиака в производствах азотной кислоты установлена сравнительно невысокая взрывоопасность технологического процесса, что обусловлено низкой взрывоопасностью аммиака и рядом других указанных выше особенностей процесса. [c.447]

    Для окисления аммиака в производственных условиях смесь его с воздухом с определенной скоростью, при 500° С, пропускают через контактный аппарат—конвертор, снабженный платиновыми сетками (рис. 75). На рисунке 76 такая сетка представлена отдельно. Полученную окись азота переводят в азотную кислоту так же, как и при дуговом методе. [c.234]

    Процесс получения разбавленной азотной кислоты заключается в контактном окислении газообразного аммиака и абсорбции окислов азота водой. В зависимости от условий ведения производственного процесса различают следующие типы азотнокислотных систем  [c.368]

    Сначала намечалось получать азотную кислоту из окислов азота, образованных фиксацией атмосферного азота в пламени электрической дуги. Однако от этого проекта пришлось отказаться, так как новый завод и необходимый для него мощный источник энергии (гидростанция) могли быть пущены не ранее 1920 г. Проблема была решена на основе контактного способа окисления аммиака, получаемого как побочный продукт на коксохимических заводах [1—3]. Инициатором работ в этом направлении был академик В. Н. Ипатьев. Работы по изучению процесса получения контактной азотной кислоты выполнил выдающийся инженер-химик И. И. Андреев, которого считают основоположником азотной промышленности в нашей стране. В короткий срок И. И. Андреев с сотрудниками выполнил обширные исследования по очистке аммиака коксовых заводов от примесей, по выбору катализатора, по выявлению оптимальных условий процессов окисления аммиака и абсорбции окислов азота водой и т. д. [c.38]

    Основные мероприятия, осуществляемые в практических условиях для уменьшения потерь платинового катализатора, сводятся к следующим уменьшение температуры окисления аммиака, устранение вибрации сеток, направление газового потока в контактном аппарате сверху вниз и расположение сеток на колосниках, увеличение размера конверторов, своевременная замена изношенных платиноидных сеток, применение двухступенчатого катализатора и использование неплатинового катализатора. [c.77]


    Процесс окисления аммиака — весьма сложный процесс и в зависимости от тех или иных условий может протекать в различных направлениях. Степень превращения аммиака в окись азота зависит от ряда условий состава катализатора, концентрации кислорода в воздушно-аммиачной смеси, времени соприкосновения газа с катализатором, температуры контактирования, давления в контактном аппарате и наличия вредных примесей (ядов). [c.238]

    Сероводород вызывает отравление платиновых катализаторов при окислении аммиака и при многих других каталитических реакциях. Данных о вредном влиянии сероводорода на платиновые катализаторы в условиях контактного окисления двуокиси серы не имеется. [c.100]

    Оптимальное, т. е. наиболее выгодное в смысле количества получаемого продукта, время контактирования (соприкосновение газов с катализатором) колеблется в пределах от одной до двух десятитысячных долей секунды. При меньшем времени соприкосновения газа с катализатором выход окиси азота снижается, так как аммиак не успевает окислиться на катализаторе. При большем времени контактирования выход N0 также снижается из-за протекания вредных побочных реакций. Повышение давления увеличивает скорость окисления аммиака до окиси азота. Однако это приводит к увеличению потерь платины — катализатора. В условиях процесса окисления аммиака платиновый катализатор постепенно становится рыхлым, теряет свою первоначальную прочность и мельчайшие частички его уносятся с газовым потоком. В установках, работающих под атмосферным давлением при температуре около 800°, потери платины на 1 т азотной кислоты составляют 0,04—0,06 г. С повышением давления и температуры потери катализатора увеличиваются в 5—7 раз. Поэтому азотную кислоту получают главным образом в установках, работающих под атмосферным давлением. На рис. 29 показана принципиальная схема контактного аппарата для каталитического окисления аммиака под атмосферным давлением. Аппарат имеет корпус 1 цилиндрической [c.83]

    Платиновые катализаторы очень чувствительны к примесям, которые могут попадать в контактный аппарат с аммиачно-воздушной смесью. Особенно сильным ядом является фосфористый водород, отравляющий платиновый катализатор необратимо даже при содержании его в газовой смеси 0,00001%. Соединения, содержащие серу, отравляют катализатор обратимо. Недопустимо попадание на поверхность катализатора пыли, ржавчины и смазочного масла из компрессора. В связи с этим воздух и аммиак перед контактным аппаратом тщательно очищаются. Однако небольшое количество примесей все же попадает в контактный аппарат при этом постепенно активность катализатора снижается. Для восстановления активности катализатора его промывают слабыми растворами соляной и азотной кислот. В условиях процесса окисления аммиака платиновый катализатор постепенно становится рыхлым, теряет свою первоначальную прочность, и мельчайшие частицы его уносятся с газовым потоком. В установках, работающих [c.55]

    М. В. Поляков с сотр. установил, что в условиях контактного окисления аммиака превращение его в азот происходит не в результате разложения NH3, а вследствие окисления. Аммиак, проходящий при большой скорости газового потока в пространство за ка-тализаторной сеткой, неизбежно теряется. Он может реагировать с окисью азота, давая элементарный азот, затем с двуокисью азота, образуя азотистокислый и азотнокислый аммоний, в свою очередь разлагающиеся при высокой температуре на азот и закись азота. [c.64]

    При контактном окислении аммиака стремятся создать условия, при которых скорость юбразования окиси азота была бы наибольшей, т. е. преобладала бы первая реакция. [c.163]

    М. В. Поляков с сотрудниками установили,, что в условиях контактного окисления аммиака превращение его в азот происходит не в результате разложения ЫНз, а вследствие окисления. Преждевременное окисление ам-миака вызывает значительно большие потери его, чем потери из-за разложения оюиси азота. [c.59]

    Контактные аппараты поверхностного контак-т а применяются реже, чем аппараты с фильтрующим или взвешенным слоем катализатора. При поверхностном контакте активная поверхность катализатора невелика. Поэтому aппaJ)aты такого типа целесообразно применять лишь для быстрых экзотермических реакций на высокоактивном катализаторе, обеспечивающем выход, близкий к теоретическому. При этих условиях в контактном аппарате не требуется размещать большие количества катализатора. Принципиальная схема контактного аппарата с катализатором в виде сеток показана на рис. 102. В корпусе аппарата горизонтально укреплены одна над другой несколько сеток (пакет сеток), изготовленных из активного для данной реакции металла или сплава. Подогрев газа до температуры зажигания производится главным образом в самом аппарате за счет теплоты излучения раскаленных сеток. Время соприкосновения газа с поверхностью сеток составляет тысячные — десятитысячные доли секунды. Такие аппараты просты по устройству и высокопроизводительны. Они применяются для окисления аммиака на платино-палладиево-родиевых сетках, для синтеза ацетона из изопропилового спирта на серебряных сетках, для конверсии метанола на медных или серебряных сетках и т. п. Эти же процессы с применением других менее активных, но более дешевых катализаторов проводят в аппаратах с фильтрующим или взвешенным слоем катализатора. В некоторых случаях, чтобы совместить катализ и нагрев газовой смеси, катализатор наносят на стенки теплообменных труб. [c.236]

    Контактный аппарат служит для окисления аммиака на катализаторе — платиновой сетае с получением окиси азота. По экономи-.ческим соображениям, этот процесс выгодно вести при максимальном содержании аммиака в смеси, одиако в таких условиях смесь становится взрывоопасной, поэтому процесс приходится вести на некотором удалении-от взрывоопасной кО]Щентрации. [c.80]

    В связи с тем что значительная часть современных азотнокислотных заводов работает,при повышенных давлениях порядка 6—8 кГ/см и намечается тенденция строительства новых заводов по переработке аммиака под давлением [3, 4], представляет особьш промБпиленный и научный интерес изучение контактных свойств иеплатиновых катализаторов для окисления аммиака при повышенном давлении. В литературе имеются лишь указания [1, 2] о том, что эти катализаторь для работы под давлением непригодны, так как их активность постепенно уменьшается. Предпринятые коллективом специальности технологии неорганических веществ Томского политехнического института систематические исследования активности различных каталитических систем показывают, что неплатиновые окисные катализаторы работают под давлением устойчиво и в лабораторных условиях можно достичь сравнительно высоких выходов окиси азота. [c.215]

    В настоящее время адсорбенты с высокоразвитой удельной поверхностью находят самое разнообразное применение. Сюда относятся процессы очистки и осущки различных газов в производственных условиях, процессы осветления и обесцвечивания растворов в производствах сахара, глюкозы, нефтепродуктов, некоторых фармацевтических препаратов и др. Кроме того, адсорбенты щироко используются в рекупе-рационной технике для извлечения ценных веществ из отходов, при очистке аммиака перед контактным окислением, водорода перед каталитической гидрогенизацией, воздуха при кондиционировании и устранении запаха (дезодорация) и др. [c.32]

    Соотношение [28] может быть использовано и для решения вопроса о значении внутренней структуры катализаторов для протекания быстрых контактных процессов в условиях преобладающего влияния внешней диффузии (т)с 0.1). Согласно уравнению [28], в этом случае Л/ц ЮО. Изменение скорости в 10 раз будет происходить на глубине 0.023 средней длины капилляра. По сравнению с диаметром капилляра — это большая величина, и работающая внутренняя поверхность и в этом случае значительно превосходит внешнюю поверхность зерен катализатора. Так, например, при окислении аммиака на окиснокобальтовом катализаторе работающая внутренняя поверхность в 500 раз превосходит внешнюю поверхность зерен. Внутренняя структура зерен катализатора имеет, следовательно, существенное значение и для быстрых реакций. В условиях, когда проте кание этих реакций регулируется внешней диффузией, внутренняя структура не влияет на скорость, но определяет те граничные значения скоростей газового потока и температуры, при которых возможно протекание процесса во внешней диффузионной области. Этим объясняется увеличение допустимой нагрузки на платинородиевые сетки в процессе окисления аммиака после разрыхления внешней поверхности. [c.418]

    Нужно заметить, что известны и гомогенные реакции синтеза нитрилов. В одном из таких процессов окислителем и одновременно донором азота служит равновесная газовая смесь, получаемая окислением аммиака кислородом на платино-родиевом сплаве или на катализаторах из окислов тяжелых металлов (железо, кобальт, молибден), модифицированных, окислами висмута [163]. По выходе из контактного аппарата газовый поток, содержащий азотистую кислоту, смешивают с лропиленом и пропускают через полую трубку при 470— 530 °С. Степень конверсии пропилена составляет 40%. Главным продуктом является акрилонитрил селективность его образования достигает 88 /о-В сходных условиях изобутилен -превращается в метакрилонитрил (степень конверсии 29%, селективность 85%), о-ксилол в о-фталодинитрил (89 и 91%), а-пиколин в 2-цианпиридин (54 и 80%)- Во всех случаях в небольших количествах получаются ненасыщенные альдегиды, H N, СО и СОг. Предлагается следующий механизм образования нитрилов  [c.152]


Смотреть страницы где упоминается термин Контактное окисление аммиака условия: [c.20]    [c.14]    [c.21]    [c.341]    [c.102]    [c.324]    [c.333]   
Общая химическая технология неорганических веществ 1964 (1964) -- [ c.268 ]

Общая химическая технология неорганических веществ 1965 (1965) -- [ c.268 ]




ПОИСК





Смотрите так же термины и статьи:

Аммиак окисление

Окисление контактное

Окисление контактное аммиака

Окисление окисление аммиака



© 2024 chem21.info Реклама на сайте