Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие каталитические реакции восстановления

    Примером каталитических реакций другого типа могут служить реакции с участием медиаторов — органических переносчиков электрона. В присутствии медиатора М становится возможным восстановление содержащегося в растворе субстрата КХ, непосредственно не восстанавливающегося на электроде в заданной области потенциалов. Процесс включает стадии электрохимического восстановления медиатора и последующего переноса электрона в гомогенной фазе с анион-радикала М на молекулу субстрата с полной регенерацией медиатора  [c.194]


    Другие каталитические реакции восстановления [c.262]

    Помимо отравления, активность катализатора может падать, во-первых, вследствие уменьшения активной поверхности при повышенных техмпературах, из-за рекристаллизации, спекания, оплавления кристаллов во-вторых, при механическом экранировании поверхности катализатора примесями, например пылью (в газе) или твердыми веществами, образующимися при катализе. Характерным примером может служить отложение на поверхности алюмосиликатных и других катализаторов углеродистых соединений при проведении сложных органических реакций, в частности каталитического крекинга. Восстановление активности катализатора (регенерация) достигается простым выжиганием углеродистых веществ. [c.233]

    Активация катализатора — это особая обработка Приготовленного катализатора для придания ему большей эффективности и большей стойкости в процессе катализа. Регенерация катализатора имеет целью восстановить каталитические свойства отработанного катализатора. Катализатор может частично или полностью потерять активность вследствие внутреннего или поверхностного отравления, или вследствие малой стабильности. В то время как активацией стремятся повысить активность катализатора и увеличить его жизнеспособность еще до употребления в каталитической реакции, регенерацией реактивируют катализатор, потерявший каталитические свойства в процессе каталитической реакции. Восстановление активности отработанного катализатора диктуется экономическими соображениями. Проблемы, связанные как с активацией, так и с регенерацией катализатора, рассматриваются при выборе катализатора для определенного процесса. Хотя каждая из этих проблем может иметь свое индивидуальное решение, в каждом каталитическом процессе они все же в известной степени связаны между собой. Способы активации не должны выпадать из поля зрения при решении технологии приготовления катализатора. С другой стороны, при выборе катализатора для определенного каталитического процесса следует всегда иметь в виду возможность регенерации использованного катализатора. [c.300]

    Снижение каталитической активности при избытке активатора наблюдалось и в других каталитических реакциях — гидролиза, окисления-восстановления, замещения [26, 62—77], причем всегда наибольшую активность проявляли координационно-ненасыщенные комплексы. Заполнение координационной сферы максимально возможным количеством молекул активатора приводит к ингибированию каталитической реакции даже в присутствии веществ, способных при низких концентрациях увеличивать скорость каталитического процесса на несколько порядков. Поэтому часто зависимость скорости каталитической реакции от концентрации активатора проходит через максимум (рис. 1). [c.31]


    Еще в тот период, когда перекись рассматривали как окисленную кислоту, были сделаны наблюдения по эффективному разложению ее такими веществами, как окись серебра, свинец, двуокись марганца и платина. Для некоторых из этих веществ Тенар дает полное описание химического действия, сопровождающего каталитическое разложение перекиси водорода. Так, например, он описывает восстановление окиси серебра до металлического серебра при введении ее в перекись водорода, полное растворение окиси серебра, наблюдаемое при приливании кислоты, и выпадение металлического серебра и продолжение разложения перекиси водорода, вызываемое последующей нейтрализацией. После некоторых таких наблюдений реакций разложения Тенар сделал вывод, что в этих разложениях, по-видимому, отсутствует химическое воздействие поэтому необходимо приписать эти воздействия физической причине однако они не связаны ни с нагреванием, ни со светом, а поэтому они, вероятно, электрического происхождения . Были исследованы и другие каталитические реакции, и при суммировании реакций перекиси водорода Тенар точно отметил различие между явлениями разложения, протекающими с химическим изменением агента разложения и без его изменения. [c.13]

    Катализаторы — комплексные соединения переходных металлов. Реакции восстановления, гидрирования, окисления, гидратации ненасыщенных соединений, изомеризации, полимеризации и многие другие в промышленных условиях осуществляются в растворах в присутствии комплексных катализаторов. По типу применяемых катализаторов эти процессы иногда объединяют в группу координационного катализа. В качестве катализаторов в таких процессах применяются комплексные соединения катионов переходных металлов. Сюда относятся металлы УП1 группы Ре, Со, N1, Ни, КЬ, Рс1, Оз, 1г, Р1, а также Си, Ag, Hg, Сг и Мп. Сущность каталитического действия заключается в том, что ионы металлов с -электронной конфигурацией с/ —могут взаимодействовать с другими молекулами, выступая как акцепторы электронов, принимая электроны на свободные /-орбитали, и как доноры электронов. На рис. 200 показано взаимодействие ВЗМО этилена со свободной -орбиталью иона металла (а) и одновременное взаимодействие заполненной -орбитали металла с НСМО этилена (б). Донорно-акцепторное взаимодействие, обусловленное переходом электронов с я-орбитали этилена, уменьшает электронную плотность между атомами углерода и, следовательно, уменьшает энергию связи С=С. Взаимодействие, обусловленное переходами электронов с -орбитали иона металла на разрыхляющую орбиталь молекулы этилена, приводит к ослаблению связей С=С и С—Н. [c.626]

    Присутствие бария защищает катализатор от восстановления гидрирующим водородом. Восстановление делается заметным по изменению черной окраски в красноватую, причем полностью исчезает способность активировать водород, в то время как другие каталитические реакции, как, например, превращение альдегидов в эфиры, особенно ускоряются этими катализаторами, которые содержат, как можно думать, одновалентную медь. Замена бария магнием или кальцием нисколько не улучшает контакта для гидрирования. [c.24]

    Судя по литературным данным, система палладий—рутений представляет интерес как катализатор в некоторых каталитических реакциях восстановления и окисления. Этому вопросу посвящен ряд научных исследований [4—9]. Кроме того, в работах [5, 9] были измерены кривые заряжения этой системы. Вопросу же сорбционных и других физико-химических свойств системы палладий— рутений уделено недостаточно внимания. Настоящая работа имеет своей целью несколько восполнить этот пробел. [c.45]

    Использование полиметаллических катализаторов требует глубокой очистки сырья от серы и других каталитических ядов, применения особых приемов вывода катализаторов на режим, связанных с их восстановлением и осернением, поддержания оптимального содержания хлора в катализаторах в цикле реакции (см. 2.3). Большое значение приобретают способы быстрого хлорирования катализаторов в пусковой период (см. гл. 9). Регенерация полиметаллических катализаторов включает стадию оксихлорирования, необходимую для редиспергирования металлической фазы и доведения содержания хлора в катализаторе до требуемого уровня (см. 2.4). [c.131]

    Полимераналогичные превращения характерны не только для природных, но и синтетических полимеров. Так, первой, ранее других изученной реакцией таких превращений было каталитическое восстановление полистирола  [c.406]

    Значительное внимание в литературе [15, 17] уделено изучению механизма реакции восстановления окиси азота водородом на мелкодисперсной платине Общее стехиометрическое уравнение этого процесса не позволяет судить, идет ли эта реакция на поверхности платины (каталитический путь), либо протекает сопряженная химическая реакция, т е. компоненты реагируют не друг с другом, а каждый из них реагирует с металлом на границе раздела металл — раствор, где и происходит перенос электронов [c.140]


    Однако такое выражение отвечает только частным случаям реакции, при которых используется молекулярный водород в каталитических процессах или водород в момент выделения в чисто химических, в большинстве же процессов восстановления, имеющих практический интерес, водород не вводится в реакционную среду. Поэтому в общем виде процесс правильнее представить как систему реакций, в которых участвует нитросоединение, дающее свой кислород (окисляющее), и другие ингредиенты реакционной среды, принимающие этот кислород (окисляющиеся). Если при течении этих реакций останавливаться только на этой стадии, то можно получить в продуктах реакции соединения с заместителями, менее богатыми кислородом, чем нитрогруппа [КМО, НМ(0) МН], или совсем, лишенные кислорода (КМ= МК). Если же кроме того реакционная среда делает возможным проявление реакционности со стороны водородных соединений (например воды, когда она вовлечена в окислительный процесс с расщеплением молекулы на Н и ОН), тогда продуктами реакции восстановления оказываются и имеющие при азоте водород (с кислородом или без него)  [c.126]

    Подробно рассмотрено [56] использование процесса для удаления окислов азота из газов путем каталитического восстановления до азота. Для этой реакции восстановления применяется описанный выше катализатор. В качестве восстановителя могут применяться такие газы, как водород, окись углерода и метан (или другие газообразные углеводороды). Процесс можно осуществлять при атмосферном или повышенном давлении рабочие температуры охватывают интервал от комнатной до 540° С. Типичная схема установки для проведения процесса под атмосферным давлением изображена на рис. 13.14. Для систем, работающих под повышенным давлением, используют каталитические элементы типа сменного патрона, подобные показанному на рис. 13.15. Газ поступает в реактор через боковой патрубок и по кольцевому зазору, окружающему главный корпус, движется вверх. Вверху направление [c.345]

    Среди других физико-химических методов определения мышьяка можно упомянуть кинетические методы [110, 252, 479]. По одному из них [252] микроколичества мышьяка определяют по реакции восстановления ионов серебра железом(П), катализируемой арсенат-ионами. В другом методе [479] используют каталитическое действие арсената на реакцию окисления иодида перекисью водорода. Этот метод применен для определения мышьяка в фосфоре. Чувствительность метода 10 нг As в 15 мл раствора. [c.91]

    По-видимому, весьма вероятно, что большинство активных центров в молекулах ферментов имеет больше чем одну группу, способную образовать связь с частями субстрата. Низкие величины энергии активации могут являться результатом одновременной атаки несколькими группами, весьма схожей с пуш-пул механизмами, предложенными для реакций гидролиза, катализируемых кислотами и основаниями. Было найдено, что наличие и кислотной,, и основной групп в соответствуюш,их положениях в одной молекуле может быть намного эффективнее, чем наличие тех же групп,, но в раздельных молекулах. Возможно, что в реакциях окисления и восстановления от субстрата к ферменту и наоборот переносятся не ионы, а радикалы. И в этом случае более благоприятным с энергетической точки зрения может быть одновременный перенос к соседним местам и от них, чем определенная последовательность в разрыве и образовании связей. Целесообразно провести сравнение с механизмом Ридила в гетерогенно-каталитических реакциях гидрирования, где один атом водорода удаляется с поверхности,, в то время как другой атом из газовой фазы садится на соседнее место. [c.140]

    Реакция гидрополимеризации олефинов не идет под действием СО в отсутствие Нг [4]. Это показывает, что инициаторами реакции являются не сами молекулы СО, а поверхностные соединения, образующиеся при восстановлении СО водородом. Такие соединения, имеющие характер промежуточных образований, могут состоять из углерода и водорода или содержать также кислород. Обращает на себя внимание то обстоятельство, что эти соединения, адсорбированные иа катализаторе, выступают в роли центров, инициирующих реакцию, причем подобное инициирование может быть сопоставлено с действием свободных атомов и радикалов в объеме, которые вызывают гомогенные цепные реакции. Действительно, было показано [5, 6], что при гидрополимеризации олефинов под действием СО число вступивших в эту реакцию молекул олефина, приходящееся на одну молекулу инициатора (СО), значительно превышает единицу и иногда доходит до 45. Далее оказалось, что этот выход на инициатор зависит от концентрации инициатора, а именно, увеличивается с уменьшением этой концентрации. Эти и другие экспериментально полученные результаты [5] позволили сделать вывод, что рассматриваемая гетерогенно-каталитическая реакция носит характер радикально-цепного процесса. [c.404]

    Другие описанные методы не нашли широкого применения. Превращение хиназолонов в соответствующие хлорхиназолины легко осуществляется с помощью раствора пятихлористого фосфора в хлорокиси фос( ра высокая активность атома хлора в хлорхиназолинах дает возможность легко ввести многие функциональные заместители. Некоторые из таких производных нашли применение для приготовления красителей и лекарственных препаратов. Третий класс соединений, содержащих хиназолиновое кольцо, включает гидрированные хиназолины. Наиболее важными из них являются 3,4-дигидро-хиназолины (V). Эти частично гидрированные хиназолины являются единственными в своем роде гетероциклическими соединениями вследствие их неожиданной устойчивости и легкости получения. 3,4-Дигидрохиназолин представляет собой бесцветное кристаллическое соединение ст. пл. 127°. При окислении в мягких условиях он превращается в хиназолин, а при кислотном гидролизе— в о-аминобензиламин. 3,4-Дигидрохиназолин устойчив в большинстве химических и каталитических реакций восстановления. Для превращения его в [c.270]

    Аналогичные явления избирательного отравления хорошо известны и для других каталитических реакций. Так, Вильштеттер и Хатт заметили, что хотя тиофен препятствует гидрогенизации бензола на платине, однако двойная связь лимонена над тем же катализатором продолжает гидрироваться нацело. Кубота и> Иошикава также показали, что никелевый катализатор сохраняет способность гидрировать олефины уже после того, как он нацело отравлен тиофеном в отношении реакции гидрирования бензола. Можно привести пример избирательного отравления также и из несколько другой области катализа Мидльтон показал, что кобальт-ториевый катализатор синтеза бензина из окиси углерода и водорода может быть так обработан серусодержащими газами, что будет получаться бензин, богатый олефипами. Повидимому, центры, на которых происходит гидрирование олефинов, отравлены, тогда как активность тех центров, на которых происходят восстановление окиси углерода и полимеризация метиленовых радикалов, изменилась лишь незначительно. [c.243]

    Наряду с обширными исследованиями в области описанных выше каталитических превращений, Б. А. Казанский интересовался и другими каталитическими реакциями. Так, в работах по каталитическому синтезу углеводородов из окиси углерода и водорода [67, 74—76] им, совместно с Я. Т. Эйдусом, А. М. Рубинштейном и др., было уделено особое внимание подбору активных катализаторов для этого процесса, а также эффективных носителей для них из отечественного сырья. Были найдены добавки, снижающие в весьма значительной степени температуру восстановления катализаторов, а также превосходный носитель — кизельгур отечественного месторождения Кисатиби, позволивший наладить производство некоторых промышленных катализаторов. [c.36]

    Последняя стадия определяет скорость всего процесса. Для реализации этой стадии необходимо, чтобы, во-первых, разряд водородных ионов протекал беспрепятственно (или во всяком случае егче, чем разряд восстанавливаемых частиц) и, во-вторых, присоединение атома водорода к частиц(з Ох совершалось с меньшими затруднениями, чем рекомбинация двух водородных атомов. Эти условия лучше всего должны выполняться на металлах групп платины и железа, а также на других металлах, у которых рекомбинация водородных атомов или является замедленной стадией, или протекает с малой скоростью. Накопление водородных атомов на поверхности этих металлов в ходе их катодной поляризации способствует быстрому протеканию реакции гидрирования. Электрохимическое восстановление при подобном механизме становится сходным с процессом каталитического гидрирования с той разницей, что атомы водорода в первом случае поставляются током, а во втором — диссоциацией молекулярного водорода иа поверхности катализатора. В согласии с уравнением реакции (21.15) для илотности тока, идущего на реакцию восстановления, можно наиисать следующее выражение  [c.438]

    Конечно, и второй подход не раскрывает детального механизма процессов химической металлизации. Некоторые из них, такие, как меднение, никелирование, кобаль-тирование, серебрение и золочение, удалось объяснить участием электрохимических реакций, но в других случаях, исходя только из электрохимических соображений, этого сделать не удается. Имеются случаи, когда, например, катодный процесс электроосаждения металла значительно ускоряется небольшими добавками восстановителя, которые, казалось бы, не должны вообще как-то влиять на электровосстановление металла. И наоборот, небольшие добавки ионов металла ускоряют анодное окисление восстановителя, проявляя каталитические свойства. Все это указывает, что наряду с электрохимическими реакциями протекают и чисто химические с непосредственным переносом электрона от восстановителя к окислителю (иону металла) и с образованием промежуточных продуктов, оказывающих значительное влияние на электрохилшческие реакции. Так что при изучении процессов химической металлизации нужно иметь в виду обе возможности (рис. 8). Кроме того, возможен и внутрикомплексный перенес электрона в комплексном соединении иона металла с восстановителем при адсорбции его на поверхности металла. Существование таких комплексных соединений установлено. Однако еще нет прямых доказательств, что каталитический процесс восстановления ионов металла протекает при участии именно этих координированных в комплексное соединение молекул восстановителя. Но при восстановлении ионов металла в [c.33]

    Во многих катализаторах содержатся металлы, которые могут иметь несколько различных степеней окисления. Например, в исходном катализаторе, содержащем железо, могут присутствовать ионы Ре , Ре + или и те и другие. Есть основания считать, что каталитические свойства определяются именно смесями ионов разного заряда или ионами с изменяющимися степенями окисления. При исследовании катализаторов с переменной степенью окисления следует оценивать возможную валентность их ионов в заданных условиях. Например, в условиях, способствующих протеканию реакции восстановления, оксиды молибдена находятся в низкой степени окисления (4-Н и ниже), а при их использовании в качестве катализаторов окисления при избытке кислорода валентность молибдена близка к максимальной (6-Н). Можно сравнивать каталитические свойства М0О2 и МоОз в отношении определенной реакции, но нужно помнить, что в заданных условиях может существовать только одно из этих соединений. [c.9]

    Появление в химии в конце сороковых годов алюмогидрида лития вызвало коренной переворот в методах получения спиртов восстановлением. До этого каталитическое гидрирование под давлением занимало ведущее положение по сравнению с гидрированием водородом, выделяющимся при взаимодействии активного металла и спирта. Хотя применение гидридов металлов сильно снизило значение других методов получения спиртов восстановлением, эти методы все же применяются достаточно широко, а в некоторых случаях являются единственными способами получения, и потому рассматриваются в отдельных разделах. Вслед за восстановлением гидридами металлов рассмотрены реакции восстановления Меервейна — Пондорфа —Верлея и Канниццаро, поскольку общим для всех этих механизмов является перенос гидрид-иона. Реакция восстановления активным металлом и спиртом служит мостом к обсуждению каталитического гидрирования. За ним следует раздел, посвященный бимолекулярному восстановлению. Может вызвать удивление включение в последний раздел бензоиновой и ацилоино-вой конденсаций, которые можно было бы рассмотреть в той части главы, которая посвящена описанию реакций конденсации. Однако процесс восстановления является составной частью этих реакций, а продукты, получаемые при этом, достаточно близки к продуктам реакций восстановления, поэтому они и рассматриваются вместе с реакциями восстановления. Как и в других главах, в конце этого раздела описываются различные реакции восстановления, служащие для получения спиртов. [c.222]

    Вероятно, в дальнейшем будут обнаружены многие другие примеры иабирательного восстановления в условиях каталитического переноса водорода. К сожалению, как это уже отмечалось, механизм реакций не ясен, поэтому трудно делать предсказания, касающиеся не изученных систем. Таким образом, в настоящее время гидрирование с переносом водорода обычно представляет собой метод, используемый наряду с прямым гидрированием. К преимуществам этого метода следует отнести отсутствие необходимости в специальной аппаратуре, а недостаток заключается в том, что за реакцией нельзя наблюдать по поглощению газа, как это делается при прямом гидрировании. [c.353]

    В последние годы обнаружена еще одна возможная интересная область применения перхлоратов как катализаторов реакций превращения энергии солнечного излучения в химическую энергию. Хейдт с сотр. " установили, что простой каталитический фотохимический процесс расщепления возможен в воде, содержащей ионизированные перхлораты трех- и четырехвалентного це-рия н избыток свободной хлорной кислоты (концентрация аниона IO4 составляет примерно 2,5—3 М). Часть лучей поглощается при окислении ионов Се (III) до ионов Се (IV), причем выделяется водород другая часть лучей поглощается при обратной реакции восстановления ионов Се (IV) до ионов Се (III) с одновременным выделением, кислорода. При соответствующей конструкции аппарата можно получать водород и кислород в разных точках системы собранные водород и кислород отличаются высокой чистотой (водород не содержит Од, а кислород—Hj) . В дальнейшем они могут быть использованы в качестве источников химической энергии. Хотя, по-видимому, это открытие вносит коренные изменения в область использования солнечной энергии, потребуется еще много времени, пока станет возможным его практическое применение. [c.160]

    Восстановление литийалюминийгидридом. Литийалюми-нийгидрид, впервые открытый Шлезингером и сотр. является наиболее универсальным восстанавливающим агентом в органической химии . К достоинствам литийалюминийгидрида относятся в первую очередь его растворимость в эфире, достаточная стойкость при комнатной температуре в сухой атмосфере, сравнительно большое содержание водорода, участвующего в реакц восстановления, высокая селективность его действия, достаточная активность уже при комнатной температуре и др. Метод восстановления литийалюминийгидридом вследствие относительной простоты особенно удобен в лабораторной практике. Литийалюминийгидрид широко используется для восстановления нитрилов в амины, в меньшей степени для восстановления в альдимины и другие продукты. При восстановлении нитрилов литийалюминийгидридом до аминов получают (за малыми исключениями, например ) только первичные амины, вторичные и третичные амины почти не образуются. Этим восстановление литийалюминийгидридом выгодно отличается от каталитического гидрирования. [c.325]

    Исследованы два носителя оксид бария и оксид магния. Они показали различные, но связанные эффекты. В случае с оксидом бария [18] (приоритет сотрудников фирмы Форда) рутений и оксид бария взаимодействуют в окислительных условиях с образованием рутената ВаКиОз. При восстановительных условиях рутений возвращается в восстановленное состояние и участвует в каталитической реакции. Использовали также другие соединения, образующие рутенат, включая редкоземельные оксиды. Проблемой применения этих веществ является устранение их недолговечности, отчасти из-за периодических превращений между рутенатом и металлическим рутением. Использование оксида магния ликвидирует данную проблему, так как он не образует рутенат в основной массе. По-видимому, происходит взаимодействие на поверхности между хорошо диспергированными рутением и оксидом магния, достаточное, чтобы ингибировать спекание и свести до минимума улетучивание оксида рутения [19, 20]. [c.35]

    Яды специфичны для различных катализаторов, как и для различных реакций, в которых катализаторы принимают участие. Например, водород действует как яд при образовании воды на сплавах благородных металлов и железа, а кислород отравляет синтез воды на сплавах из благородных металлов и никеля [238] Вода при высокой концентрации отравляет сжигание окиси >тлерода иа различных катализаторах [56]. Соединения мышьяка являются сильными ядами для катализаторов, применяемых в контактном процессе получения серного ангидрида. Мышьяковистый ангидрид — сильный яд для каталитической гидрогенизации с платиной вследствие восстановления его в арсин. Тот же самый яд оказывает относительно слабое действие на активность платины при разложении перекиси водорода. Таким образом, некоторые вещества могут действовать как яды для определенных каталитических реакций, в других случаях совсем не действуя они могут даже действовать как промоторы в некоторых каталитических реакциях. Висмут, сильный яд для железа при каталитической гидрогенизации, является одним из наиболее активных промоторов для же леза при каталитическом окислении аммиака в окись азота. Подобным образом фосфат кальция является промотором для никеля в каталитической гидрогенизации, между тем как фссфор или фосфин сильные яды. Никель, отравленный тиофеном, не гидрогенизирует ароматический цикл, в то время как его способность гидрогенизировать олефины не нарушается [130, 161]. Сера или сульфиды, которые обычно действуют как яды, при каталитическом восстановлении бензоилхлорида и гидрогенизации смол могзт действовать как катализаторы [184]. Сероуглерод действует как ускоритель в процессе растворения кадмия в соляной кислоте [226]. Есть случаи, когда вещество, взятое в маленьких количествах, остается неактивным, но при применении в большом количестве действует как яд. Например, в реакции нафталина с японской кислой землей хлороформ неактивен в малом количестве и не оказывает никакого отравляющего действия, но взятый в большом количестве вызывает уменьшение количества смолы, образующейся с нафталином под влиянием земли. Хлористоводородная кислота, образующаяся из хлороформа, взятого в больших количествах, уменьшает каталитическую активность [134]. [c.392]

    Еще лучшие технологические условия достигаются в ряде процессов переводом реагирующих веществ в газовую фазу (испарением их). Многие реакции, которые в жидкой фазе проводятся в несколько стадий, удалось осуществить прямым путем, в газовой фазе на твердых катализаторах, применяя высокие температуры. Примерами могут служить прямая гидратация этилена (см. гл. ХУП1), прямое восстановление нитробензола в анилин и многие другие газовые каталитические реакции, которые пришли на смену малоэффективным, громоздким по аппаратурному оформлению процессам в жидкой фазе. Газовые каталитические реакции можно проводить непрерывно, в малогабаритной аппаратуре (благодаря высоким скоростям реакций), циклически, с минимальными потерями реагентов, с полной автоматизацией производства. [c.144]

    Адсорбционные свойства древесного и костяного угля известны давно. Ловиц (1785) применял уголь для обесцвечивания растворов винной кислоты. Фигье (1811) обнаружил, что костяной уголь тоже обладает заметной обесцве-чивающей способностью. Адсорбционные и каталитические свойства активных углей растительного и животного происхождения, приготовленных различными способами, изменяются в зависимости от размера пор и содержания посторонних веществ. Структура и примеси посторонних веществ влияют на применение углистых материалов в каталитических реакциях. Некоторые активированные угли могут служить адсорбентами для газов и жидкостей и в известной степени катализаторами. Например, в присутствии кислорода некоторые виды угля легко окисляют сероводород другие окисляют окись углерода. Многие угли пригодны для хлорирования, восстановления, дегидрогенизации и полимеризации. Аналогично поведение геля кремневой кислоты и цеолитов. Проницаемость и пропитываемость являются другими факторами, с которыми следует считаться при применении углистых материалов как носителей для катализаторов. Отверстия пор или капилляров неактивированного угля закрыты пленками, состоящими из ориентированных, насыщенных атомов. Обычно такие пленки образуются в результате адсорбции смолистых веществ во время процесса коксования. У активированного угля полости образуются системами атомов, в которых на один ненасыщенный активный углеродный атом приходится двенадцать неактивных углеродных атомов [342]. Различные виды углей имеют поры различного размера. Например  [c.480]

    Каталитическая активность сложных оксидных систем как и индивидуальных оксидов хорощо коррелирует с прочностью связи кислорода в решетке твердых тел. С увеличением прочности этой связи активность сложных оксвдных катализаторов в реакциях глубокого окисления органических соединений, как правило, убьтает. Зависимость между скоростью глубокого окисления органических веществ на различных катализаторах и прочностью связи кислорода с их поверхностью часто рассматривается как доказательство протекания указанных реакций по стадийной схеме, включающей отрыв поверхностного кислорода в качестве обязательной (даже лимитирующей) стадии процесса. В то же время известны и другие, неокислительные реакции, для которых также наблюдается довольно хорошая корреляция между скоростью катализа и прочностью связи кислорода. Например, на молибдатах различных элементов существует зависимость между скоростями изомеризадии бутена-1 в бутен-2, глубокого окисления олефинов и восстановления поверхности водородом и пропиленом (рис. 20). Скорости всех указанных реакций зависят от энергии связи кислорода с катионом. [c.100]

    В качестве, основного доказательства протекания каталитической реакции с обязательным участием кислорода катализатора обьино приводят наблюдаемое в ряде случаев равенство скорости каталитического окисления веществ (wкaт) и скорости восстановления этим веществом катализатора (Wвo т) при от-. сутствии кислорода в газовой фазе. В этих работах сравнение скоростей указанных реакций (катализ и восстановление) проводили при одинаковых (или почти одинаковых) состояниях катализатора. После определения скорости каталитической реакции реакционную смесь быстро выводила из реактора и заменяли другой, в которой отсутствовал кислород, и определяли скорость взаимодействия катализатора с этой смесью. Очень удобными для этих целей оказался импульсный метод проведения реакции, когда после стандартной подготовки катализатора в поток газа, проходящий через слой катализатора, импульсно вводят смесь, содержащую окисляемое вещество с кислородом (катализ), либо смесь того же окисляемого вещества с инертным газом (восстановление). [c.103]

    Третий метод получения дисперсных благородных металлов, в частности платины, — это восстановительное осаждение из водных растворов по традиционному способу Вильштеттера восстановление проводят формальдегидом, но можно применять и другие восстановители, например альдозы, гидразин или боргидрид натрия. Порошкообразное вещество, диспергиронанное в водной среде, также представляет собой, по-видимому, смесь платины и окиси платины неопределенного состава. Во всех этих случаях в качестве катализатора гидрирования применяют образующийся вначале содержащий кислород порошок, его восстановление происходит in situ на начальной стадии каталитической реакции. Это — довольно важное обстоятельство, поскольку такая процедура приводит к оптимальной активности катализатора, Попытки тщательно очистить поверхность дисперсного [c.228]

    Реакции гидрирования с участием к льтцианидной системы — примеры каталитического процесса, при котором металл активирует только водород [реакция (1) в разд. 2]. Скорости реакций (21), (22) [39] и (23) [33, 39] не зависят от концентрации цианид-иона это указывает на то, что олефиновые комплексы кобальта в ходе гидрирования не образуются. Другой пример гидрирования, протекающего по реакции (1),—это гидрирование, катализируемое, производными непереходных металлов н, в частности, литийалюминййгидридом, который катализирует восстановление ацетиленов до гранс-олефинов и сопряженных диенов до моноенов в тетрагидрофуране при 190 °С и давлении 100 атм [40]. Эти и другие сходные реакции, катализируемые гидридами металлов [41], протекают через промежуточное образование металлалкильных производных, которые расщепляются непосредственно водородом.  [c.19]


Смотреть страницы где упоминается термин Другие каталитические реакции восстановления: [c.22]    [c.202]    [c.200]    [c.175]    [c.320]    [c.157]    [c.605]    [c.107]    [c.157]    [c.255]    [c.136]    [c.195]   
Смотреть главы в:

Межфазный катализ в органическом синтезе  -> Другие каталитические реакции восстановления




ПОИСК





Смотрите так же термины и статьи:

Восстановления реакции

Каталитические реакции Реакции

Каталитические реакции Реакции каталитические

Реакции каталитические

Реакции окисления и восстановления катионами и другие гомогенно-каталитические окислительно-восстановительные реакции



© 2025 chem21.info Реклама на сайте