Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Техника безопасности при окислении

    Недостатком куба как окислительного аппарата является неполное использование кислорода воздуха. Из рис. 28 видно, что при производстве дорожных битумов содержание кислорода в газах окисления составляет 7—9% (об.), а при производстве строительных — 13—17% (об.). Повышенная концентрация кислорода в газовом пространстве куба обусловливает возможность закоксовывания стенок этого пространства и взрыва в газовой фазе. Обеспечение взрывобезопасности требует постоянной подачи водяного пара для снижения концентрации кислорода до величины, нормированной правилами техники безопасности (4% об.). [c.51]


    В практике не всегда соблюдаются требования правил техники безопасности проведения процесса окисления, поэтому происходят аварии с разрушением зданий и оборудования и травмированием работающих. Так, на одном из предприятий произошла авария в производстве капролактама на стадии окисления циклогексана воздухом произошло загорание в верхней части аппарата. Процесс проводили при 140—150 и давлении 1,2—1,8 МПа. [c.107]

    При окислении сырья воздухом содержание кислорода в газовой фазе в зоне ввода воздуха составляет 21% (об.). Особенности режима в реакторах (барботаж) исключают образование очага горения непосредственно в зоне реакции, однако для исключения горения и на последующих стадиях — после выхода отработанной газовой смеси из слоя жидкости — необходимо соблюдать в реакторе условия (температуру, перемешивание и др.), обеспечивающие достаточно полное расходование кислорода воздуха [281], или разбавлять отработанные газы инертным газом до взрывобезопасного содержания кислорода. Принцип обеспечения низкого взрывобезопасного содержания кислорода в газах окисления принят для производства окисленных битумов -в соответствии с требованиями техники безопасности содержание кислорода в отработанных газах окисления не должно превышать 4% (об.) для всех битумов, кроме высоко-плавких (рубраксы, лаковые и другие битумы, имеющие т м-пературу размягчения выше 100 °С), для которых без дополнительных обоснований установлена концентрация кислорода, равная 8% (об..). [c.176]

    В период пуска агрегата окисления наиболее часто допускаются ошибки, которые в ряде случаев приводят к образованию в аппаратуре смеси взрывоопасной концентрации, что влечет за собой аварии. Поэтому производственный персонал должен быть хорошо обучен правилам безопасного пуска и остановки агрегата, строго соблюдать технологические инструкции и инструкции по технике безопасности. [c.44]

    Авторы приводят исчерпывающие сведения практически по всем аспектам использования как существующих, так и потенциальных СНГ. В первой части книги основное внимание они уделяют собственно СНГ, рассматривают их особенности, химический состав и методы очистки. Описание авторами физических и химических свойств данных газов является всеобъемлющим. Ими установлены основополагающие критерии, которыми следует руководствоваться при решении практических задач, возникающих при переработке и хранении жидких и эффективном сжигании газообразных углеводородов. Исчерпывающие сведения по термодинамическим свойствам компонентов СНГ могут быть в одинаковой степени полезны как студентам и исследователям, так и специалистам-прак-тикам. Рассмотренные в начале работы вопросы горения, в основе которого лежат реакции окисления углеводородов, логично подводят читателя к установлению характеристик горения СНГ, а затем и к конструированию соответствующих горелочных устройств. Первая часть книги заканчивается рассмотрением вопросов распределения, переработки и хранения (включая весьма важные вопросы техники безопасности) СНГ при их использовании в ком- [c.5]


    В заключении заметим, что отбор проб из трубопровода газов окисления относится к газоопасным работам. Поэтому персонал, участвующий в испытаниях, должен строго соблюдать производственные и ведомственные инструкции (например, упоминающиеся ранее ПГО-89) по технике безопасности, принимая во внимание специфику работы и конкретные местные условия. [c.461]

    Лаборанту поручили проверить, как идет взаимодействие гидроксида цезия с бесцветным газом, поступающим по трубке из аппарата каталитического окисления аммиака. Он начал пропускать этот газ через склянки, наполненные гранулированным СзОН. Поглощается ли газ твердым гидроксидом цезия, было непонятно во всяком случае, на выходе из поглотительных склянок тоже пришлось собирать газ в цилиндры. Набрав три или четыре таких цилиндра, лаборант обнаружил, что резиновый шланг на входе поглотительных склянок потрескался исследуемый газ шел прямо в атмосферу и на глазах становился желто-бурым. Пришлось срочно восстанавливать герметичность установки. Наконец, опыт был закончен. В поглотительных склянках обнаружили расплывающийся на воздухе гигроскопичный нитрит цезия. Настала очередь испытать собранный газ. Когда в один из цилиндров внесли тлеющую лучинку, она ярко вспыхнула. Кислород — подумал лаборант. Он давно мечтал узнать, чем пахнет чистый кислород. И вот, пренебрегая правилами техники безопасности, лаборант приоткрыл пластинку второго газового цилиндра и понюхал собранный газ. Запах был слабый, но приятный. Вдруг лаборант стал судорожно смеяться, прыгать с цилиндром в руках и, приплясывая, выбежал в коридор. Объясните, что произошло. [c.133]

    В газовой фазе при высокой концентрации паров цепная реакция идет со взрывом, так как обрыв цепи в этих условиях затруднен Это обстоятельство необходимо иметь всегда в виду с точки зрения техники безопасности, поэтому использование открытого огня в закрытых помещениях, насыщенных парами алканов, категорически запрещено Высокая экзотермичность процесса горения поддерживает далее окисление-горение с самоускорением [c.232]

    В ЖИВЫХ ОРГАНИЗМАХ. Биологическая роль сурьмы до сих пор не выяснена. Известно, что и сама сурьма, и ее соединения токсичны. Отравления возможны при производстве сурьмы и ее сплавов, поэтому технике безопасности, механизации производства, вентиляции уделяют здесь особое внимание. Однако, с другой стороны, сурьма обнаружена в растениях —0,0б мг на килограмм сухого веса, в организмах животных и человека. Этот элемент избира тельно концентрируется в печени, селезенке, щитовидной железе. Интересно, что в плазме крови в основном накапливается сурьма в степени окисления +5, а в эритроцитах — +3. [c.60]

    По данным многих авторов [1, 6, 43—47, 78, 79, 85, 101], повышение температуры окисления увеличивает скорость процесса. Так, при температуре 350 °С окисление происходит в 4—5 раз быстрее, чем при 250 °С. Однако, судя по многим источникам, при этом наблюдается ухудшение товарных характеристик битума, поэтому многие считают, что окисление надо проводить при возможно более низких температурах [101, 102] или при 225—250 °С, т. е. при таких температурах, которые сочетают высокое качество битумов со сравнительно малой продолжительностью окисления [47, 55, 101, 102]. Другие же авторы считают, что повышение температуры окисления не сказывается существенно на механических свойствах битумов [1], поэтому процесс можно вести при 275— 300 С [78, 86, 103]. Однако выше 300 С температуру окисления поднимать нельзя и не только из-за образования кар-бенов и карбоидов, но и по соображениям техники безопасности [104]. [c.31]

    Размеры капиталовложений и эксплуатационных расходов, методы очистки отходящих газов, методы аналитического контроля и мероприятия по технике безопасности при обоих вариантах (частичного окисления и с разделением потока) практически полностью совпадают. [c.375]

    Обработка давлением. Отливки диаметром 400—450 мм обычно подвергают ковке или прессованию (экструзией), а дальнейшую их обработку можно проводить всеми методами. Ковку отливок проводят как правило на прессах. Температура нагрева 635—640 °С, температура конца ковки 527 °С. Нагрев и подогревы производят в соляных ваннах. Это позволяет добиться быстрого нагрева и прогрева заготовок, снизить потерн на окисление и использовать соляную рубашку в качестве смазки. Продолжительность нагрева заготовки диаметром 450 мм составляет 3 ч, диаметром 175 мм—45 мин. Ковку на молотах не применяют по соображениям техники безопасности нз-за разбрызгивания соляного покрытия. Ковку ведут, сначала осаживая слиток вдоль его ося для раз-р шения первичной литой структуры, а затем в перпендикулярном на- [c.618]

    Окислительные агенты и техника безопасности в процессах окисления. Если в лабораторной технике и при тонком органическом синтезе нередко применяют такие окислительные агенты, как перманганаты (в щелочной, нейтральной или кислой среде), дихроматы, триоксид хрома, пероксиды некоторых металлов (марганца, свинца, натрия), то в промышленности основного органического и нефтехимического синтеза стараются пользоваться более дешевыми окислителями и лишь в отдельных случаях применяют агенты, способные к реакциям, не протекающим в присутствии других окислителей. [c.340]


    Техника безопасности в процессах окисления определяется главным образом тем, что окислительные агенты дают с органическими веществами взрывоопасные смеси или являются соединениями, склонными к разложению. Взрывоопасные свойства газообразных смесей углеводородов с воздухом и данные о температурах вспышки жидких углеводородов приведены в главе 1. Близки к ним по пределам взрывоопасных концентраций и другие органические вещества (спирты, кетоны, альдегиды), причем эти пределы становятся более широкими при использовании чистого кислорода. При жидкофазных реакциях окисления взрывоопасность тем больше, чем выше давление паров органического вещества, образующего взрывоопасные смеси с воздухом или кислородом. [c.342]

    Многие перхлораты могут быть получены непосредственно окислением водных растворов их хлоратов или хлоридов, однако практически таким способом получают только перхлорат натрия. Перхлораты калия, аммония и некоторых других металлов удобнее получать обменным разложением перхлората натрия с соответствующей солью калия, аммония и др. Прямое получение перхлоратов калия затрудняется из-за малой растворимости как хлората, так и перхлората калия. Непосредственное электрохимическое окисление хлорида или хлората аммония до его перхлората не применяется по условиям техники безопасности. Получение перхлоратов щелочноземельных металлов электролизом сопряжено с теми же трудностями, которые были рассмотрены ранее для хлоратов этих металлов (стр. 70 сл). [c.93]

    РЕГЕНЕРАЦИЯ КАТАЛИЗАТОРОВ, УТИЛИЗАЦИЯ ОТХОДОВ И ТЕХНИКА БЕЗОПАСНОСТИ ЖИДКОФАЗНОГО ОКИСЛЕНИЯ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ [c.225]

    Т. 2 включает продолжение разд. Г Препаративная часть>, куда вошли методики проведения реакций окисления, дегидрирования, реакций с участием карбонильных соединений и их гетероаналогов, реакции перегруппировки кроме того, приведены методы идентификации орга.нических соединений, справочные данные по важнейшим реагентам, сведения по технике безопасности. [c.4]

    При температуре автоклавной обработки окисление Ре + — Ре и Мп —Мп идет интенсивно. Поэтому при фильтровании железо и марганец достаточно полно отделяются. Очистка от прочих примесей аналогична очистке других щелочных растворов воль-фраматов [90]. Отрицательной стороной автоклавного метода является необходимость принятия особых мер техники безопасности при работе с аппаратами высокого давления. [c.587]

    Применявшийся прежде многостадийный технологический процесс получения этиленоксида включал в себя водное хло-рированге этилена с последующей обработкой промежуточного продукта щелочью, примем в качестве побочного продукта получалась соляная кислота. Нецелесообразность этого способа с точки зрения техники безопасности определялось тем, что в процессе участвовал токсичный хлор, обращались агрессивные и вызывающие коррозию вещества (хлор, щелочи, кислоты), ш процесс был легкоуправляемым на всех стадиях и это определяло его применение. Другой способ получения эти-лепоксид 1 одностадийным прямым окислением этилена кислородом возд/ха не применялся, поскольку этот процесс неустойчив [c.223]

    Лет 30-40 тому назад основным аппаратом дпя производства окисленных битумов был так называемый куб - цилиндрический аппарат периодического действия с небольшой асличиной отношения высота диаметр . Типовой куб имеет высоту 10 м и диа етр 5,3 м. В зависимости от заданной производительности на установке сооружали до 11 кубов [1,2], Каждый из них снабжали необходимой для осуществления процесса окисления контрольно-измерительной аппаратурой, а также системой, обеспечивающей безопасность эксплуатации (паротушение, взрывные пластины). Графики работы кубов (закачка сырья, окисление, паспортизация и слив битума) совмещали так, чтобы периодическая работа отдельных кубов обеспечивала непрерывность рабочы установки в целом. Как окислительный аппарат куб характеризуется низкой эффективностью, то есть невысокой степенью использования кислорода воздуха в реакциях окисления содержание кислорода в газах окисления составляет при производстве дорожных битумов 7-9 % об., строительных - 13-17% об. Это, с одной стороны, предопределяет высокие энергозатраты на производство (расход электроэнергии на сжатие воздуха для окисления, расход топлива на сжигание газов окисления), с другой стороны, обусловливает возможность закоксовывания стенок газового 17ространства ок1 слительпого аппарата н загораний и взрывов в газовой фазе. Обеспечение взрывобезопасности требует постоянной подачи инертного газа (азота или водяного пара) для снижения концентрации кислорода до величины, нормированной правилами техники безопасности. [c.42]

    Классификация газоохладителей. Охладители газа, ис пользуемые в компрессорных установках, разделяются по назначению и месту установки на межступенчатые и концевые. Первые используются для охлаждения газа между ступенями сжатия. Использование вторых обусловлено требованиями эксплуатации и техники безопасности. Снижение температуры газа в газоохла-дителях позволяет освободить газ от водяного конденсата и масла в специальных влагомаслоотделителях, и таким образом предотвратить обмерзание трубопроводов вне помещения компрессорной станции в зимнее время. Охлаждение газа уменьшает время нахождения масла в горячем газе, т. е. уменьшает возможность окисления масла и количество нагарообразований в трубопроводах, а, следовательно, уменьшает опасность взрыва. [c.240]

    Между лабораторным и промышленным синтезом органических соединений имеется ряд принципиальных различий. Например, цена химикатов, использованных в лабораторном синтезе, обычно не имеет решающего значения, поскольку синтез проводится в сравнительно малых масштабах. Поэтому при лабораторном восстановлении кетонов в спирты можно использовать сравнительно дорогой алюмогидрид лития, в то время как в промышленности для этих целей применяют сравнительно дешевые водород и никелевый катализатор. Другим примером дешевого реагента является кислород воздуха, с помощью которого в промышленности осуществляется ряд процессов каталитического окисления. Исходный материал для промышленных синтезов также должен быть дешевым и легкодоступным в больших количествах. Поэтому такой материал в большинстве случаев получают с помощью простейших методов из указанных выше источников сырья, прежде всего из природного газа и нефти. Применяемые растворители тоже должны быть дешевыми, а кроме того (по возможности), негорючими или хотя бы малогорючими. В то время как в лабораторных условиях не составляет проблемы провести синтез с использованием в качестве растворителя нескольких литров диэтилового эфира, применение этого растворителя в промышленном производстве вызывает большие трудности, связанные с его горючестью (складирование больших количеств растворителя, соблюдение строгих предписаний техники безопасности всеми работниками и т. д.), так что он применяется только в исключительных случаях. [c.241]

    Амид натрия — в высшей степени реакцнонноспособное вещество С водой он реагирует со взрывом. Поэтому при работе с ним необходимо строго соблюдать правила техники безопасности. Вести работу с малыми количествами амида (несколько граммов) следует в защитных очках, а при больших загрузках все операции производить за предохранительным щитом в очках или в маске из акрилатного стекла. Неправильно или слишком долго хранившийся амид натрия становится взрывоопасным вследствие образования неустойчивых продуктов окисления последние окрашивают его в желтый или коричневый цвет. При появлении такой окраски продукт надо немедленно уничтожить залить вещество большим количеством толуола или керосина и медленно при перемешивании прибавить 90%-ный спирт. Удобная методика получения амида натрия приведена в кииге [55], [c.58]

    В качестве аппаратуры можно использовать автоклавы с механическим перемешиванием из нержавеющ,ей стали специальных сортов [б1. Автоклавное выщ,елачивание связано с трудностями подбора аппаратуры из-за образования больших количеств aSOi и в отношении техники безопасности (см. ранее). Метод, как известно, применяется для окисления сульфидов других металлов. Исследования по применению его для молибденовых концентратов и руд целесообразны. [c.207]

    Кислотное разложение имеет некоторые преимущества по сравнению со щелочным, особенно с методом спекания проще конструктивно оборудование, короче схема очистки, так как многие примеси полностью или частично отделяются на стадии разложения. Сера и мышьяк частично удаляются при разложении в составе H2S и АзНз, но в присутствии окислителей (например, HNO 3) они частично окисляются до высших степеней окисления и переходят в раствор. Большое число примесей отделяется в осадок при последующем растворении H2WO4 в растворе аммиака. При осуществлении кислотного разложения встречаются трудности в подборе материалов для аппаратуры и вентиляционных устройств, в соблюдении условий охраны труда и техники безопасности при работе с крепкими кислотами и выделении ядовитых газов. [c.257]

    Важным параметром, определяющим протекание процесса окисления, является содержание кислорода в газах окисления. Для установок с трубчатым реактором содержание кислорода обычно не превышает 3 (об.). Увеличение содержания кислорода говорит о нарулениях режима окисления. Повышение содержания кислорода выше 4 (об.) недопустимо по правилам техники безопасности, так как возможно воспламенение продукта в газовом тракте установки. В этом случае немедленно подают инертный газ или водяной пар в испаритель, а затем принимают меры по восстановлению режима. [c.83]

    Во втором томе рассматриваются важнейшие процессы нефтехимии гидрирование и дегидрирование изомеризация алкилирование и деалкилирование гидрокрекинг каталитический риформинг окисление гидратация этерифика-ция гидролиз галогенирование и дегалогенирование приводятся сведения о синтезах метанола, высших спиртов, олефинов, карбонатов, гликолей и полиглико-лей, азот- и серусодержащих соединений и др., о конденсационных и полимери-зационных процессах, получении мономеров для СК, а также о кинетике основных реакций нефтехимического синтеза, о технике безопасности и об изобретательском и патентном праве. [c.263]

    Накопленный обширный экспёриментальный материал носит разрозненный характер и во многих елучд.ях не лишен прот иво-речивых толкований и выводов. В настоящее время отсутствуют работы, обобш аюш.ие достигнутый уровень в области теории и практики жидкофазных процессов окисления алкилароматических углеводородов. Потребность в такой литературе очевидна, и авторы предприняли попытку восполнить пробел в недостающей научно-технической информации. При изложений материала книги главное внимание было уделено изложению но-, вых данных, основанных на работах авторов и литературных источниках за последние 10— 15 лет по химии и технологии окисления ароматических углеводородов в присутствии металл-бромидных катализаторов в области умеренных (до 140 °С) и повышенных (до 220 °С) температур, инженерному оформлению процессов получения ряда кислородсодержащих соединений, включая вопросы регенерации и утилизации отходов производств, а также технику безопасности. [c.6]

    Современные процессы синтеза изопрена обладают рядом особен,-ностей а) массовость производства в сочетании с довольно высокой стоимостью получаемого продукта б) исключительно высокое качество вырабатываемого изопрена (чистота мономера не ниже 98,5— 99,0%) в) сложность технологии — применение техники высоких температур и давлений, агрессивность сред, жесткие требования техники безопасности, необходимость очистки загрязненных стоков и т. д. г) использование всего комплекса последних достижений химии и химической технологий. Так, в производстве изопрена широко применяются новые направления синтетической химии, например, использование комплексных гомогенных каталитических систем, инициированный крекинг, сопряженное окисление, окислительное дегидрирование, диспропорционирование углеводородов и др. наиболее прогрессивные конструкции реакторов (с псевдоожиженным слоем, туннельные с подвижным слоем катализатора, секционированные и адиабатические и т. д.), наконец, новейшие методы выделения и очистки продуктов — четкая, сверхчеткая, азеотропная и экстрактивная ректификация, в том числе вакуумная и под давлением, экстракция, топкие методы химической очистки и т. д. [c.9]

    Правила и нормы техники безопасности и про.мышленной санитарии для проектирования, строительства и эксплуатации производства синильной кислоты методом каталитического окисления метана и аммиака кислородом воздуха. Изд. Химия , 1965. [c.173]


Смотреть страницы где упоминается термин Техника безопасности при окислении: [c.48]    [c.64]    [c.37]    [c.224]    [c.63]    [c.63]   
Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.488 , c.489 , c.518 , c.520 ]

Теория технологических процессов основного органического и нефтехимического синтеза Издание 2 (1975) -- [ c.426 , c.463 ]




ПОИСК







© 2025 chem21.info Реклама на сайте