Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конденсаторы спиральные

    Спиральный теплообменник. Он состоит из двух спиральных каналов, навитых вокруг центральной перегородки (рис. 85). Ширина кольцевой щели 5—25 мм (постоянная ширина щели обеспечивается за счет приварки дистанционных штифтов). Спиральные теплообменные аппараты применяются в качестве теплообменников, конденсаторов и испарителей. Одно из назначений спиральных теплообменников — нагревание и охлаждение высоковязких жидкостей так как вязкая жидкость проходит по одному каналу, то устраняется проблема равномерного распределения жидкости по трубам. [c.102]


    Спиральные теплообменники различных конструкций применяются для системы жидкость-жидкость и жидкость-пар в качестве конденсаторов, нагревателей и испарителей, для охлаждения и нагревания парогазовых смесей. Конструкция спирального теплообменника представляет собой две ленты, соединенные в середине перегородкой (керном) и навитые вокруг этой перегородки так, что образуется два спиральных канала для рабочи сред, между которыми передается тепло. Каждый канал присоединяется к штуцеру в центре и на периферии. [c.196]

    Удельный вес теплообменно-конденсационной аппаратуры на нефтеперерабатывающих и нефтехимических заводах довольно высок (более 40%). В технологических установках применяют теплообменники различных типов кожухотрубные, труба в трубе, пластинчатые, графитовые и спиральные, подогреватели с паровым пространством, погружные конденсаторы-холодильники, аппараты воздушного охлаждения, а также кристаллизаторы. [c.223]

    Спиральные теплообменники устанавливают как вертикально, так и горизонтально. Когда они используются в качестве конденсаторов или испарителей, их устанавливают только вертикально. Они обеспечивают развитую поверхность и сравнительно высокий коэффициент теплопередачи при малом гидравлическом сопротивлении, однако их применяют значительно реже, чем кожухотрубчатые. [c.103]

    Основными частями его являются ректификационная колонка и перегонная колба. Колонка снабжена вакуумным кожухом, верхняя часть которого переходит в сосуд Дьюара. Сюда в качестве хладагента вводят жидкий воздух или азот. Колонка заполнена спиральной насадкой из проволоки. Пары сверху колонки отводятся через конденсатор в калиброванный приемник, помещенный в термостат. Температуру отходящих из колонки паров замеряют с помощью термопары, находящейся в конденсаторе, а давление — ртутным манометром. Перегонная колба снабжена электрообогревом. [c.114]

    По конструктивному выполнению роторные колонны можно подразделить на следующие группы (см. разд. 5.1.1) а) колонны с вращающейся металлической лентой (рис. 282), которая может иметь плоскую, спиральную или крестовидную форму б) колонны с вращаю щимся цилиндром (ширина щели между цилиндрическим корпусом колонны и вращающимся цилиндром составляет 1—2 мм [см. рис. 286]) в) колонны с цилиндрическим конденсатором, вращающимся внутри обогреваемого цилиндрического корпуса колонны (рис. 283) г) колонны с вращающимися и не- [c.360]

    Многие оригинальные конфигурации поверхности получаются путем деформации основной трубы. Витые трубы, гофрированные трубы, трубы спиральные или со спиральным рифлением имеют многократно начинающиеся спиральные рифления вдоль длины трубы. В [32] проведено систематическое исследование характеристик одиночной трубы для применяемых в промышленности типов труб, используемых для работы в конденсаторах пара (конденсирующийся пар снаружи, вода внутри). Отмечено увеличение номинального внутреннего коэффициента теплоотдачи (отнесенного к диаметру гладкой трубы того же самого максимального внутреннего диаметра) до 400% однако перепады давления на водной стороне возросли приблизительно в 20 раз. [c.324]


    При проведении последующей стадии — метилирования ацетиленида иатрия в этот тубус вставляют пришлифованную капельную воронку. Горло воронки закрывают пробкой с трубкой, присоединенной на тройнике к верхнему концу обратного холодильника (для выравнивания давления). К свободному отростку тройника присоединены промывные склянки, колонки для высушивания (любой конструкции) и спиральный конденсатор с приемником в нижней части (см. рис. 101, стр. 301) для сбора сжиженного метилацетилена. [c.369]

    По форме различают спиральные и петлевые (зигзагообразные) змеевики. Простейшие змеевиковые теплообменники — погружные, представляющие собой змеевик, погруженный в какой-либо сосуд. Их широко применяют в качестве теплообменных эле-м.ентов реакционных емкостных аппаратов. Использование погружных спиральных змеевиков как самостоятельных теплообмен-ных аппаратов нецелесообразно из-за их громоздкости к плохой теплопередачи. В отличие от них оросительные змеевиковые теплообменники являются вполне современной конструкцией. Эти теплообменники (холодильники и конденсаторы) представляют собой петлевые змеевики с горизонтально расположенными трубами, над которыми устанавливают оро-с 1тельные устройства с отверстиями для воды. Под змеевиком устанавливают поддон для сбора охлаждаьэщей воды. Достоинство [c.100]

    Секции конденсаторов и холодильников применяют пз отдельных труб (рис. 231) и спирально-замкнутых (гнутых) труб. [c.401]

    Змеевиковые конденсаторы-холодильники из спирально-замкнутых [c.403]

    При продолжительной сублимации и для сублимации в макромасштабе предпочтительно иметь проточное жидкостное охлаждение [140—150]. В прежних устройствах [151, 152] помещали конденсатор типа холодный палец в горле конической воронки, которая покоилась на ободке сосуда, содержащего сублимируемое вещество. Ободок служил для сбора жидкого конденсата, а пористая пластина, лежащая на чашке, удерживала упавший сублимат. В зависимости от перегоняемого вещества необходимо уплотнить зазор между ободком и воронкой, что можно осуществить с помощью ртути, парафина или липкого пластыря. Прибор может быть легко видоизменен для сублимации с носителем или в вакууме. Более простая форма сублиматора [153] изображена на рис. 3. Если в качестве сублиматора пользуются пробиркой, то на трубчатом конденсаторе должны быть напаяны три выступа [154, 155], которые мешают соприкосновению стенок трубки и конденсатора при вынимании последнего (рис. 4). При количественной работе с небольшой навеской вещества сублимат смывают с конденсатора, раствор испаряют досуха и остаток взвешивают. Для непосредственного взвешивания сублимата [156] был разработан прибор, изображенный на рис. 5. Конденсатор состоит из спиральной трубки, которая после сублимации [c.519]

    Наибольшее распространение в промышленности получили кожухотрубчатые аппараты и аппараты типа труба в трубе. В отдельных технологических процессах используются спиральные и пластинчатые аппараты, а для особо агрессивных рабочих сред — графитовые теплообменники. В качестве конденсаторов и холодильников широко используются аппараты воздушного охлаждения. [c.6]

    В практике дистилляции и ректификации таллового масла получили распространение теплообменники смесительные — эжекторы, полочные и насадочные конденсаторы поверхностные, в том числе кожухотрубчатые, спиральные, змеевиковые [c.118]

    Схема сдувочных конденсационных установок, используемых на большинстве сульфатно-целлюлозных предприятий, аналогична установке по улавливанию сдувок периодической варки целлюлозы. В состав установки входят щелокоуловители, конденсатор кожухотрубного или спирального типа, флорентина 8 и сборник сульфатного скипидара-сырца 9. [c.151]

    Спиральные теплообменники нецелесообразно использовать в качестве конденсаторов I ступени. В спиральных конденсаторах парогазы подаются по всей длине (несколько метров) спирали (щели). Конденсат стекает в нижнюю часть теплообменника и, двигаясь по спирали в горизонтальном направлении, вытекает из него. Таким образом, в этих теплообменниках наблюдается прямоточный характер процесса. При дробной конденсации паров в нижней части конденсационной зоны скапливаются пары со значительным количеством скипидара и конденсат, практически не содержащий его. Это приводит к частичной конденсации паров скипидара, а следовательно, к потерям скипидара с первым конденсатом. [c.154]

    Излучатель звука [375] состоит из неподвижно закрепленной плоской спиральной катушки, против которой располагается медная мембрана. Сильный импульс тока получается при разряде конденсатора. В качестве выключателя используется устойчивый в двух положениях воздушный искровой промежуток, (триггерная схема). На рис. 8.12 это показано схематически, однако на практике такая схема может быть видоизменена для формирования импульсов. [c.176]

    Конденсатор воздушного охлаждения. Простейшее устройство этого рода состоит [219, 220] из длинной трубки, к одному концу которой (Л) присоединен источник носителя, а к другому концу—счетчик пузырьков. Сублимируемое вещество помещают в трубку вблизи А и нагревают. Сублимат собирается в холодном конце трубки. В другом аппарате [221] сублимируемое вещество помещают в спиральную стеклянную трубку, которая затем вставляется в термостат, поддерживаемый при температуре чуть ниже точки плавления. Ток воздуха входит через слой натронной извести в осушительные трубки, проходит над сублимируемым веществом через нагреваемую трубку в кран, соединенный с вакуумной трубкой, далее в широкую горизонтальную трубку, где собирается сублимат. Затем носитель проходит через хлоркальциевую трубку в аспиратор. При помощи этого прибора была исследована сублимация нафталина из смесей нафталина с р-нафтолом. [c.530]


    В испарителе И жидкая смесь испаряется за счет тепла, подводимого циркулирующим в трубном пространстве раствором СаС . Циркуляция раствора осуществляется центробежным насосом 9. Раствор перемешивается мешалкой 12. Пары из испарителя 11 поступают в корпус контактора 5, откуда поднимаются по спиральному каналу в центральную трубу и вместе с парами питания входят в конденсатор 3. Нижний продукт нз испарителя 11 отбирается в газгольдер. [c.257]

    Куб 13 охлаждают до требуемой температуры с помощью бани, заполненной смесью метанола с сухим льдом или другим хладо-агентом. Одновременно хладоагент загружают в конденсатор 4. Если по каким-либо причинам нежелательно поддерживать постоянную температуру конденсации с помощью криостата с охлаждающим рассолом, то в качестве хладоагентов можно применять жидкий воздух или азот. Затем в кубе 13 конденсируют высушенную и, при необходимости, освобожденную от СОз пробу газа. После этого вместо охлаждающей бани используют сосуд Дьюара 12. При правильной установке верхний край сосуда Дьюара должен соприкасаться с держателем штатива, поддерживающим куб. Содержимое куба 13 испаряют, как обычно, с помощью электронагревателя 11. Неперегретые пары поступают в спиральную колонну 1, изолированную посеребренным высоковакууми-рованным кожухом и дополнительно стекловолокном, Преду- [c.252]

    Более совершенными являются многоходовые трубчатые тепло-обменпые аппараты конструкции Нефтепроекта их применяют также в качестве конденсаторов и холодильников. На фиг. 170 представлен разрез двухходового теплообменника со спиральными перегородками поверхностью нагрева 59 м . [c.279]

    Сначала охлаждают куб колонки 7 смесью метилового спирта с сухим льдом или другим охлаждающим агентом в бане до требуемой температуры. Одновременно помещают охлаждающую смесь в холодильник 8. Затем в кубе колонки 7 конденсируют высушенную и, если это необходимо, освобожденную от Og пробу газа. Куб колонки снабжен шлифом 9. Затем вместо охлаждающей бани ставят сосуд Дьюара 10 таким образом, что верхний край изолирующего сосуда соприкасается с держателем штатива. Испарение в кубе 7 производят, как обычно, с помощью электронагрева 11. Без перегрева пары попадают в спиральную колонку 12, которая снабжена для холодоизоляции высоковакуумной рубашкой с посеребренной поверхностью и дополнительной изоляцией из стекловолокна. На верхнем конце колонки предусмотрено измерение температуры в защитной трубке, которая исключает переохлаждение термометра 3 стекающим конденсатом. Отбор дистиллата производят ниже конденсатора через регулирующий кран 13. [c.284]

    Р н с. 257. Щелевая колонка Янцена и Викхорста I — испаритель 2 — кольцевая щель з — термопара 4 —холодильник (из меди) л — воздушный конденсатор 6 — корковая крошка 7 — электрообогрев и — спиральные протравленные полосы на поверхностях обоих трубок. образующих щель. [c.375]

    Последняя стадия получения бутадиена заключается в отщеплении брома от полученного тетрабромбутана и выделении чистого бутадиена. Для этого тетрабромбутан переводят, растворяя его в горячем спирте, в круглодонную колбу, в которой находится суспензия цинковой пыли я спирте (300 мл спирта и 200 г цинковой пыли), быстро пэремешиваемая мешалкой. Горячий спиртовый раствор тетрабромбутана вводят с такой, скоростью, чтобы смесь в колбе поддерживалась горячей за счет теплоты реакции и в обратном холодильнике. наблюдалось интенсивное стекание флегмы. Образующийся бутадиен поступает через спиральный конденсатор, охлаждаемый водой и ловушку, погруженную в лед, в два соединенных последовательно конденсатора, которые охлаждаются смесью сухого льда с ацетоном. В них происходит практически полная конденсация бутадиена. [c.359]

    Очищенный ацетилен (см. рис. 115) подают через реометр / и спиральный увлажнитель 2 в реактор 3, помещенный в термостат 4, где поддерживают температуру- 80 <1, Газ, выходящий из реактора, поступает в промывные склянкн 5 с водой для удаления ацеталь-дегида, затем дли высушивания — в колонку 6 (с безводным хлоридом кальция), колонку 7 (с плавленым едким кали) и затем в конденсатор 5, находящийся в дьюаровском сосуде 9 со смесью сухого льда и ацетона. Для фракционированной ректификации коц-деясата применяют эффективные колонки любой кон-(Ск. ........ [c.378]

    При отложении загрязнений на теплопередающей поверхности со стороны одной из рабочих сред и при растворимости этих загрязнений во И среде можно переодически переключать каналы. Геометрические размеры каналов в аппарате для I и И рабочих сред одинаковы, поэтому их взаимное переключение не нарушает гидродинамический процесс. Спиральные теплообменники с тупиковыми каналами (исполнения 2 и 3) или со сквозными каналами (исполнение 1) применяют в качестве конденсаторов паров или парогазовых смесей и дефлегматоров. [c.729]

    Основной полимеризатор представляет собой горизонтальный цилиндрический аппарат с рубашкой, снабженный мешалкой и обратным конденсатором. Перемешивание на второй стадии осуществляется мешалками различных типов (рамными, спиральными, геликоидальными) обязательным условием является близость кромок мешалки к Поверхности стенок реактора (зазор не более 10 мм). Подготовку реактора и загрузку компонентов проводят так же, как преполимери-затора. Теплосъем осуществляется подачей захоложенной воды в рубашку реактора, а также с помощью обратного конденсатора. [c.18]

    Схемы выделения скипидара-сырца обеспечивают только использование теплоты паров самоиспарения щелока для предварительного нагрева и пропаривания щепы, а также для подогрева воды в спиральных конденсаторах. Основными препятствиями для улавливания и сбора скипидара-сырца являются значительная загрязненность сдувочных конденсатов черным щелоком и низкое содержание скипидара в парогазах. Для предотвращения переброса черного щелока в конденсационную систему на линиях сдувочных паров должны быть установлены щелокоуловители, обеспечивающие быстрый отвод переброшен- [c.151]

    По окончании процесса экстрагирования прекращают подачу сжиженного газа, и газообразный растворитель из автоклава поступает на регенерацию в конденсатор, где создается низкая температура охлаждением змеевика конденсатора холодильным агрегатом, а соответственно — и низкое давление. Вследствие создания разности давлений в автоклаве и конденсаторе растворитель из сборников и экстрактора испаряется. Для более интенсивного испарения растворителя из экстракта, находящегося в сборниках, последние подогреваются путем циркуляции горячей воды через спиральный теплообменник, установленный под поворотттм столиком. Регенерированный газ из конденсатора возвращают в напорную емкость и используют повторно. Таким образом, растворитель в системе установки находится в замкнутом цикле, что позволяет сократить потери растворителя и использовать его многократно. [c.227]

    Существует множество конструкций ТА, и их классификация может проводиться по разным признакам. По характеру развития теплового режима во времени различают ТА, работающие в стационарном (неизменном во времени) и нестационарном (периодическом или циклическом) режимах. В большинстве случаев ТА работают в стационарном режиме (рекуперативные ТА), что обеспечивает постоянство всех параметров (главным образом температур) на выходе из аппарата. В поверхностных ТА теплота от горячего теплоносителя к холодному передается через разделяющую теплоносители поверхность (обычно это поверхности металлических труб). В контактных ТА обладающие физикохимическим свойством взаимной нерастворимости теплоносители имеют друг с другом непосредственный контакт. Различают ТА по виду обменивающихся теплотой теплоносителей жидкость—жидкость пар— жидкость газ—жидкость газ—газ. В зависимости от наличия фазовых превращений и технологического назначения ТА различают нагреватели, охладители, конденсаторы, испарители (кипятильники). По характеру движения теплоносителей внутри рабочего объема ТА бывают с вынужденным (принудительным) движением и с естественной циркуляцией теплоносителей. По способу организации прохождения теплоносителей через аппарат теплообменники разделяются на одно- и многоходовые. Встречаются ТА, в которых обмениваются теплотой не два, а три и более теплоносителей. По конструктивным признакам различают ТА трубчатые, пластинчатые, спиральные, с оребренньпйи теплообменными поверхностями и без оребрения, с наличием компенсации температурных расширений труб и кожуха и без такой компенсации, а также по некоторым другим конструктивньпй признакам. Различным аспектам теплообменной аппаратуры посвящена обширная литера-т>фа [1, 3-5, 8, 11-14, 16, 17,23, 34 ]. [c.338]

    Работа под высоким вакуумом. В конденсаторе жидкий азот. Колонка из спиральной трубки. Орошение образуется в кольцевом пространстве конденсатора требуется 1 ООО мл газа для анализа насыщенных углеводородов от метана до пентеиа или метана, этилена и этапа, [c.386]


Смотреть страницы где упоминается термин Конденсаторы спиральные: [c.236]    [c.193]    [c.251]    [c.176]    [c.10]    [c.340]    [c.134]    [c.258]    [c.540]    [c.74]    [c.75]    [c.112]    [c.148]    [c.331]    [c.226]    [c.277]    [c.119]    [c.236]   
Технология связанного азота Издание 2 (1974) -- [ c.285 ]




ПОИСК





Смотрите так же термины и статьи:

спиральные Теплообменники-конденсаторы



© 2025 chem21.info Реклама на сайте