Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конденсатор цилиндрический

    Однокорпусные вакуум-кристаллизаторы обычно представляют собой вертикальные аппараты цилиндрической формы с рамной или якорной мешалкой. Перемешивание раствора препятствует отложению кристаллов на стенках аппарата и ускоряет снижение концентрации раствора. Отсасывание и конденсация паров растворителя осуществляются с помощью конденсатора или пароструйного насоса, присоединенного к верхней части аппарата. [c.642]


    Вакуум-сушильные шкафы. Вакуум-сушильный шкаф (рис. 21-28) является простейшей контактной сушилкой периодического действия. Он представляет собой камеру / цилиндрического или прямоугольного сечения с рядом полых греющих плит 2, обогреваемых изнутри паром, на которые устанавливают противни. с высушиваемым материалом. Пары влаги через штуцер 3 отсасываются при помощи вакуум-насоса в конденсатор, где отделяются от воздуха. [c.777]

    Схема установки приведена на рисунке 2.1. Она состоит из следующих основных узлов реактора окисления, системы конденсации и улавливания парогазовых продуктов реакции и растворителя, системы контроля и регулирования температуры. В качестве реактора используется стеклянный цилиндрический сосуд (1) ёмкостью 500 мл, снабжённый пробоотборником (а), газоподводящей трубкой (б), внутренним холодильником (в), холодильником-конденсатором (г) и турбинной мешалкой (д). Мешалка приводится в действие электромотором (2), соединённым с ЛАТРом (13). Для улучшения перемешивания реактор снабжён отражательными перегородками. Обогрев реактора осуществляется с помощью нихромовой спирали (11), напряжение на которой регулируется ЛАТРом (12). Постоянство температуры поддерживают с точностью 0,5 С контактным термометром (14) управляющим электронным реле (15), которое периодически включает и выключает ЛАТР (12). Внутренний холодильник (в) используют для поддержания постоянства температуры при значительном экзотермическом эффекте реакции. [c.29]

    Оборудование конденсационно-вакуумных систем и условия надежной его работы. Барометрический конденсатор смешения представляет собой вертикальный цилиндрический аппарат с каскадными ситчатыми тарелками. В низ аппарата поступают пары из вакуумной колонны, на верх конденсатора подается охлаждающая вода. Сконденсированные нефтяные пары и вода через барометрическую трубу сливаются в колодец. Для возможности отвода воды из системы барометрический конденсатор рассчитывают на высоту не ниже 10 м. Неконденсируемые газы с верха конденсатора отсасываются эжектором. [c.202]

    На вакуумных установках обычно применяют барометрические конденсаторы двух типов трубчатый и тарельчатый противо-точный. Трубчатый барометрический конденсатор — цилиндрический аппарат диаметром 2,37 м и высотой 14 м. В корпус аппарата вварены два пучка труб один пз них — верхний — поверхностью охлаждения 211-служит для частичного использования тепла конденсацни паров солярового дистиллята для нагрева мазута, другой — поверхностью 395 — для охлаждения солярового дистиллята поступающей в пучок труб холодной водой. Оба трубчатых пучка заключены в кожух, который направляет входящие пары в низ конденсатора. Пары пз колонны входят в верхнюю часть кожуха через два штуцера диаметром 600 мм. [c.29]


    Высота цилиндрической части конденсатора, мм 2 800 3 200 3 400 3 600 4 000 4 500 [c.147]

    На термической ступени установок Клауса применяют цилиндрические реакторы, состоящие из топочной камеры и трубчатого теплообменника. В торцевой части топочной камеры расположены горелочные устройства. Основная часть сероводородного газа и воздуха обычно подается по тангенциальным каналам. В зоне смешения горение происходит в закрученном потоке. Проходя решетку из расположенного в шахматном порядке огнеупорного кирпича, продукты сгорания поступают в основной топочный объем также цилиндрической формы, но большего диаметра. Затем продукты сгорания охлаждаются водой, проходя по трубному пространству трубчатого теплообменника, и поступают в конденсатор, откуда полученная в термической ступени сера выводится в хранилище серы. Технологический газ после термической ступени, содержащий непрореагировавший сероводород, сернистый ангидрид, образовавшийся одновременно с серой при пламенном сжигании сероводорода, а также серооксид углерода и сероуглерода (продукты побочных реакций, протекающих в реакторе), вновь подогревается в подогревателе до 220-300 °С и поступает на каталитическую ступень. В каталитическом слое происходит основная реакция [c.100]

    Во избежание заноса капель битума деасфальтизации в конденсатор-холодильник 7 выходящие из сепаратора 24 пары пропана обычно пропускаются через горизонтальный цилиндрический каплеотбойник. Для удаления сероводорода часть паров пропана проходит через колонну, заполненную водным раствором щелочи (каплеотбойник и колонна щелочной очистки на схеме не показаны). [c.68]

    Принцип действия датчика давления следующий. Давление на выходе исследуемого образца фиксируется уровнем жидкости в пьезометрической трубке. С изменением давления меняется уровень жидкости, что приводит к изменению емкости цилиндрического конденсатора, образованного электродами 3 -а 6. Изменение емкости конденсатора вызывает расстройку анодного контура частотного преобразователя 2, на выходе которого изменяется сигнал постоянного тока, поступающего на выход самопишущего прибора 1. В качестве самопишущего прибора использован самопишущий миллиамперметр типа Н37 с классом точности 0,5. [c.133]

    Вакуумная перегонка осуществляется в вертикальных цилиндрических аппаратах обычно переменного по высоте колонны диаметра. Для обеспечения четкости разделения вакуумных погонов колонна имеет ректификационные тарелки разного типа. Вакуум создается за счет конденсации водяного пара, подаваемого в колонну, в барометрических конденсаторах. Вместо барометрических конденсаторов с целью уменьшения загрязнения вод используют поверхностные конденсаторы. Дополнительный вакуум создается паровыми эжекторами. [c.138]

    Сжиженные углеводородные газы принято хранить либо под высоким давлением и при температуре окружающей среды, либо при низких температурах и давлении, близком к атмосферному, в емкостях цилиндрической или сферической формы. Преимуществом сферических емкостей перед цилиндрическими является меньший расход металла и более равномерное распределение напряжений в сварных швах. Сферические емкости изготовляют объемом 400, 800 и 1000 Л4 . Их рассчитывают на рабочее давление от 3 до 6 ат . Цилиндрические емкости рассчитывают на давление от 7 до 18 ат. Система хранения сжиженных газов, широко распространенная в настоящее время, состоит из емкости, компрессора, теплообменника и конденсатора. Емкость тщательно изолирована слоем шлаковаты толщиной 200—250 мм. Сжиженный газ находится в емкости под давлением 1,05 ат и при температуре от —30 до —42° С. Испаряющаяся часть его через теплообменник попадает на прием компрессора, сжимается и направляется в конденсатор. Конденсат возвращается в емкость. На дне последней находится слой жидкого осушителя — диэтиленгликоля. В момент заполнения резервуара сжиженным газом диэтиленгликоль выдавливается в буферный бачок, откуда он возвращается в емкость во время откачки содержимого резервуара. [c.173]

    По конструктивному выполнению роторные колонны можно подразделить на следующие группы (см. разд. 5.1.1) а) колонны с вращающейся металлической лентой (рис. 282), которая может иметь плоскую, спиральную или крестовидную форму б) колонны с вращаю щимся цилиндром (ширина щели между цилиндрическим корпусом колонны и вращающимся цилиндром составляет 1—2 мм [см. рис. 286]) в) колонны с цилиндрическим конденсатором, вращающимся внутри обогреваемого цилиндрического корпуса колонны (рис. 283) г) колонны с вращающимися и не- [c.360]

    В конструктивном отношении большинство аппаратуры нефтегазоперерабатывающих заводов представляет собой цилиндрические сосуды с днищами сферической или эллиптической формы (всевозможные фракционирующие колонны, реакторы, теплообменники, емкости и др.). Сферическая форма корпусов аппаратов встречается редко, главным образом у емкостей для сжиженных газов и у электродегидраторов. Аппараты с плоскими стенками применяют еще реже. К этой группе относятся кожухи трубчатых печей, ящики конденсаторов-холодильников погружного типа и другие конструкции. [c.16]


    Вакуум-сушильный шкаф (рис. ХУ-29) представляет собой цилиндрическую (реже прямоугольную) камеру 1, в которой размещены полые плиты 2, обогреваемые изнутри паром или горячей водой. Высушиваемый материал находится в лотках (противнях), установленных на плитах. Во время работы камера герметически закрыта и соединена с установкой для создания вакуума, например с поверхностным конденсатором и вакуум-насосом. Загрузка и выгрузка материала производятся вручную. [c.624]

    Работа узла выделения определялась многими факторами, в частности, и режимом охлаждения ПГС. Если охлаждение ПГС в конденсаторах намораживания осуществляли подачей хладоагента в оребренные трубы, на которых и сублимировались пары продуктов окисления, то в безнасадочных сублиматорах в первоначальном исполнении ПГС охлаждались через его стенки атмосферным воздухом, а в последующих исполнениях — хладоагентом, подаваемым в рубашки или непосредственно в камеры для смешения с ПГС [23]. Сублимат из конденсаторов намораживания удаляли выплавлением путем подачи в трубы вместо хладоагента горячего теплоносителя, переключив подачу ПГС на другой конденсатор. Из безнасадочных сублиматоров осевшие на дно кристаллы продуктов отбирали через люки, при этом стенки камер эпизодически обстукивали деревянными молотками процесс снятия кристаллов со стен сублиматоров в настоящее время механизирован (в случае цилиндрических аппаратов — скребками, насаженными на вал, кипящим или движущимся слоем инертной насадки). В последнем случае насадка выступает и как хладоагент. Сублимированный и отбитый продукт выносится газами из конденсаторов и должен отделяться в циклонах и рукавных фильтрах, поскольку получается в очень мелкодисперсном состоянии. [c.100]

    Рабочее давление в корпусе барометрического конденсатора 60 мм рт. ст. Средняя цилиндрическая часть корпуса конденсатора соединена конусом с верхней цилиндрической частью мень- [c.179]

    Измерение диэлектрической проницаемости растворов сводится к определению емкости конденсатора, заполненного воздухом или другим веществом с известной диэлектрической проницаемостью и исследуемым веществом. Как известно из курса физики, емкость плоского или цилиндрического конденсатора при площади обкладок 5 и расстоянии между ними с1 выражается соотношением [c.332]

    На рис. 19-30 показана схема простейшего аппарата для молекулярной перегонки. Внутри цилиндрического испарителя /имеется спираль для электронагрева разделяемой смеси. Цилиндрический конденсатор 2 снабжен рубашкой <3, по которой движется охлаждающий агент. Исходная смесь подается сверху по трубе в воронку 4 и стекает пленкой по наружной поверхности испарителя. Остаток удаляется снизу через воронку 5, дистиллят, собирающийся на внутренней поверхности конденсатора, отводится также снизу по трубе 6. В кольцевом пространстве между испарителем и конденсатором поддерживается требуемый вакуум посредством насоса глубокого вакуума, присоединенного к [c.711]

    В первом случае спираль устанавливают около стенки, во втором — у дна реактора. В качестве теплообменных элементов вместо змеевиков часто используют полые диффузоры в виде цилиндрического или конического стакана с двумя гладкими, легко очищаемыми стенками (рис. 4.3, д) или пучки прямых труб (рис. 4.2, д). Иногда применяют выносные конденсаторы или теплообменники (см. рис. 4.2, в, г). [c.248]

    Определение диэлектрической проницаемости проводилось путем измерения емкости цилиндрического конденсатора, между обкладками (электродами) которого находился исследуемый раствор. В полном согласии с ранними исследованиями было обнаружено явление аномальной дисперсии диэлектрической проницаемости растворов смол в и-гентане (при концентрации 25—40%), которое выражается в уменьшении значения е растворов с ростом частоты [c.184]

    Вероятность попадания метеорита, способного пробить 2,Ь-мм стенку из нержавеющей стали, для поверхности, имеющей общую площадь 9,3 м , составляет 0,04 в год [101. Для уменьшения вероятности возникновения течи в конденсаторе в случае пробоя трубы можно применять трубы с развитой поверхностью оребрения, чтобы основная часть поверхности приходилась на ребра. Другой метод заключается в использовании цилиндрических конструкций, подобных конфигурации 5 (см. рис. 13.12), трубы которых снабжены отражателями (трубы типа С, см. рис. 13.12). Использование отражателей позволяет получить с тыльной стороны трубы почти столь же эффективный отвод тепла, как и с внешней. Если поверхность отражателя гладкая и блестящая, то около 75% энергии, падающей с тыльной стороны трубы и ребер, зеркально отражается в космическое пространство. Остальные 25% энергии либо поглощаются и потом излучаются вновь, либо диффузно отражаются. Из этих 25% примерно половина излучается в космическое пространство, а половина попадает на поверхность трубы. Таким образом, общая излучательная способность той части поверхности трубы и ребер, которая обращена к отражателю, составляет примерно 85% излучательной способности лицевой поверхности. Компоновки ребер могут быть различными, но наиболее удачной с точки зрения минимума суммарного веса является Т-образная конструкция, аналогичная типу С (см. рис. 13.12), по без верхнего ребра, которое оказалось малоэффективным [9J. Следует отметить, что лицевая сторона трубы должна быть толще для обеспечения защиты от метеоритов, так как поверхность, обращенная к отражателю, надежно защищена. [c.263]

    В схеме на рис. 33, а основным аппаратом, применяемым для конденсации, является барометрический конденсатор смешения. Он представляет собой цилиндрический аппарат с каскадными ситчатыми тарелками, под нижнюю из которых поступают пары с верха [c.151]

    В наших исследованиях [56, 102] определение диэлектрической проницаемости проводилось путем измерения емкости цилиндрического конденсатора, между обкладками (электродами) которого находился исследуемый раствор. [c.396]

    Приступая к выводу основных уравнений электрофореза и электроосмоса, рассмотрим две модели. Одна из них — пористая мембрана, насквозь пронизанная цилиндрическими капиллярными порами, другая — дисперсная система, содержащая длинные цилиндрические частицы, оси которых совпадают с направлением силовых линий электрического поля (рис. 37). Двойной электрический слой будем рассматривать как плоский конденсатор. [c.94]

    Наиболее распространенной конструкцией молекулярных перегонных аппаратов является конструкция с применением испарителя и конденсатора цилиндрической формы при концентрическом их взаимном расположении. Испарителем обычно служит внутренний цилиндр, причем вещеспво подают непрерывно на его верхний конец и его заставляют стекать по вертикально расположенной поверхности в виде топкой пленки, (принцип падающей пленки ). Таковы, например, приборы, предложенные Hi kman [1], Taylor [2] и другими. [c.87]

    Иа рис. 27 показан разрез скребкового конденсатора. Цилиндрическая обечайка его заключена в рубашку, заполненную спиртом, в которую вставлен испарительный змеевик. В средней части конденсатора имеется скребковый механизм, который удаляет лед, образующийся на внутренней поверхности обечайки. Иодвод водяных паров осуществляется через патрубок снизу конденсатора, удаление неконденсирующихся газов — через штуцер в верхней части конденсатора. Снег, счищаемый с поверхности конденсатора, попадает в бункер, расположенный в его нижней части, и периодически удаляется через отъемное дно. [c.368]

    Барометрический конденсатор — цилиндрический аппарат высотой 5596 мм и диаметром 1200 мл1. В верхней половине конденсатора размещено восемь сливных тарелок, перфорированных по всей площади. Края сливпых тарелок имеют зубчатый бортик высотой 200 мм. Вода для охлаждения паров и некондеисирующих-ся газов поступает сверху аппарата в чашу, через края которой сливается на нижележащие сливпые тарелки. Навстречу поднимаются пары и газы, отсасываемые эжектором сверху конденсатора. Пары подаются в нижнюю треть конденсатора через патрубок диаметром 250 мм. [c.313]

    Большая часть вакуумных установок оборудована барометрическим конденсатором смешения. Размеры и конструктивные элементы конденсатора зависят от производительности установки и объема парогазовых смесей, всасываемых с верха вакуумной колонны. Барометрический конденсатор (рис. 71) представляет собой сосуд цилиндрической формы с дырчатыми внутренними перегородками, не перекрывающими полное сечение конденсатора. На перегородках стекающая с верха холодная вода контактируется с поднимающимися парами и газами. Нижняя (суженная) часть конденсатора соединяется барометрической трубой (высотой 10 м) с колодцем. Загрязненная нефтепродуктами вода направляется через колодец в канализацию и далее на очистные сооружения завода. Несконденсировавшиеся газы разложения с верха конденсатора отсасываются пароэжекторными насосами (абсолютное давление пара 10—12 кгс/см ) в атмосферу. При такой работе объем стоков, загрязненных нефтепродуктами и сероводородом, составляет значительную величину. Одновременно при этом увеличивается потеря нефтепродуктов. На заводах для очистки стоков из барометрической системы сооружают специальные канализаци- [c.189]

    Образующиеся при электротермическом процессе газы, содержащие 5—7% (об.) фосфора, непрерывно через два газоотсекателя поступают на очистку от пыли. Для каждой печи предусмотрено по две системы электрофильтров. На отечественных заводах работают электрофильтры ВФ-102 конструкции Ленгипрогазоочист-ка . Каждая система состоит из двух последовательно соединенных вертикальных аппаратов высотой по 11 м, диаметром цилиндрической части 5,2 м. Аппарат состоит из трех секций нижиего коллектора, осадительных электродов и верхнего коллектора. Аппараты соединены газоходами. Кроме того, первый аппарат соединен газоходом с электропечью, второй — с конденсаторами фосфора. [c.77]

    Первоначально развитие крекинга как надежного промышленного процесса шло довольно различными путями, но по направлению к общей цели. За начало развития процессов крекинга углеводородных топлив принимают 1865 г., когда Юцг перегонял сланцевое масло с тем, чтобы вызвать частичный пиролиз при перегонке. Бентон в 1887 г. прокачивал топливо под давлением 20 атм через ряд трубок в нагретой нечи и получал углеводороды более легкие, чем те, которые использовались в качестве сырья. Регулирующий клапан находился в конце змеевика печи, но в 1899 г. Дьюар и Редвуд (Dewar and Redwood) внесли усовершенствование, в результате которого была осуществлена свободная связь между перегонным кубом п конденсатором. Вильсон отмечает, что Пальмер (ам. патент 1. 187. 380, 1916) первым установил, что стадия нагрева может быть совершенно независимой от стадии дистилляции [66]. О начальных этапах развития процессов крекинга можно прочесть в различных работах [67, 68]. Производство крекинг-бензина в больших масштабах впервые было налажено Бартоном (Burton) в 1912 г. [69—72]. Использовалась периодическая перегонка в горизонтальных цилиндрических кубах (температура процесса около 400° С и давление — от 5 до 7,0 кГ/см ). [c.303]

    Десорбер. как и абсорбер, представляет собой цилиндрический тарельчатый аппарат. Обводненный гликоль, предварительно подогретый п теплообменнике, подается в середину десорбера. Сверху его вы-х()дяг пары воды, которые конденсируются в конденсаторе-холодиль-нике, и конденсат частично возвращается на верх десорбера в качестве оро1ления. Вниз десорбера подводится тепло путем подогрева части гликоля в паровом подогревателе. Регенерированный гликоль, содержащий 1—5 вес. % воды, охлаждается в теплообменнике, холодильнике и возвращается в абсорбер. [c.158]

    Подпрессованный благодаря смачиванию цеолит помещали в плоский-конденсатор между никелевыми или никелированными обкладками. Оксид алюминия засыпали между обкладками цилиндрического конденсатора ИЛ1Г [c.255]

    Наблюдение с помощью лупы за подсвеченной сзади шкалой термометра и подсчет десятичных делений шкалы через пленку конденсата и не представляет трудностей, если верхнюю часть эбуллиоскопа предварительно протравить в течение 2мин 1%-ной фтористоводородной кислотой и затем прокипятить в мыльной воде. Кипятильная трубка 3 до самого конденсатора 2 окружена изолирующим слоем стекловолокна 4, в котором оставлена узкая смотровая щель. Под теплоизоляцией 4 на трубку 3 намотана спираль компенсационного электрообогрева 5, выполненная из тонкой проволоки. Мощность обогрева можно рассчитывать, условно представляя спираль в виде охватывающей прибор бесконечно длинной цилиндрической оболочки с равномерно распределенными источниками тепла. Электрообогрев регулируют с помощью амперметров и калибровочной кривой таким образом, чтобы без включения системы подогрева кубовой жидкости приближенно устанавливалась ожидаемая температура. В этом случае даже ттары труднолетучих веществ доходят до конденсатора, расположенного на 250 мм выше кармана термометра. Адиабатический режим в разбрызгивающей трубке обеспечивается четырехкратной защитной системой, включающей вакуумированную рубашку, слой нагретой до кипения жидкости, стекающей в кольцевой щели, спираль компенсационного электрообогрева и слой теплоизоляции. Через штуцер 1 обычно загружают жидкость, а при работе под вакуумом к нему присоединяют вакуумную линию. [c.57]

    В реакторе-автоклаве, представляющем собой горизонтальный цилиндрический аппарат, снабженный перемешивающим устройством с переменной частотой вращения и рубашкой, полимеризация продолжается до 65—70%-ной конверсии. Температура и давление на заданном значении поддерживаются регулированием температуры циркулирующей в рубашке воды. Продолжительность полимеризации 8—11 ч. Незаполимеризованный винилхлорид сдувается через фильт 4 в конденсатор 5. Сконденсированный винилхлорид стекает в емкость 2. Из автоклавов / и перед их загрузкой тщательно удаляют воздух вакуумированием или продувкой азотом. Полученный поливинилхлорид при помощи воздуха выгружается из реактора в виде пылевоз-душной смеси в буикер-циклоп 6, в котором он отделяется от воздуха и направляется на рассев. Порошкообразный поливинилхлорид проходит через грохот 7 п бункер-приемник 8, измельчается в дробилке 10 и просеивается на сите II. Готовый ноливинилхлорид собирается в бункер-приемник 12 и поступает на упаковку. [c.27]

    Для цилиндрической обечайки кожухотрубчатого конденсатора, работающего под вакуумом, рассчитать укрепление отпсрстия внешней отбортовкой стенки аппарата (см. рис. 1,30,6). [c.85]

    Для конденсации пара после паровых турбин применяют поверхностные кондбР1саторы. Конденсатор (рис. VI-5) состоит из цилиндрического корпуса, закрытого крышками. Внутри корпуса укреплены две трубные решетки, в которых закреплен трубный пучок. Пар из турбины поступает в корпус и омывает трубный пучок. Охлаждающая вода проходит по трубкам. Соприкасаясь с холодной наружной поверхностью трубок, водяной пар конденсируется. Поскольку объем конденсата значительно меньше объема пара, п конденсаторе создается вакуум. Конденсат стекает в ииж-пюю часть конденсатора и затем — в сборник. Отсюда конденсат подается питательным насосом в котел. Вместе с паром и через неплотности в конденсатор проникает воздух, который с некоторым количеством пара отсасывают пароструйным насосом (эжектором). [c.138]

    Конденсатор смешения. На нефтеперерабатывающем заводе для конденсации и охлаждения паров бепзпна и воды часто применяют конденсаторы смешения, представляюш,ие собой цилиндрические аппараты с насадкой. [c.543]

    В целях доведения расхода пара в реактор до уровня современных установок каталитического кpeки гa (2—3 % масс, от сырья), обеспечения оптимальных температур и массовых скоростей подачи сырья ГрозНИИ и Грозгипронефтехим разработали варианты реконструкции с использованием лифт-реакторов с прямоугольными поворотами или реакторов с форсированным псевдоожиженным слоем катализатора (рис. 6.22). По последнему варианту все внутренние устройства реактора (беспровальная и провальная решетки, цилиндрическая обечайка секции отпаривания и паровые маточники) демонтируют и вместо них внутри корпуса реактора устанавливают два реактора с форсированным псевдоожиженным слоем (диаметром 2 м и высотой 8 м) и цилиндрическую центральную вставку для секции отпаривания (диаметром 2,8 м и высотой 8 м). Пространство между центрально расположенной новой цилиндрической вставкой и вертикальными реакторами засыпают прокаленной диатомовой крошкой. Общее количество пара, подаваемого в реактор, сокращается в 3—4 раза и составляет в зону отпаривания 3 т/ч и в форсунки на распыливание сырья 0,5 т/ч. В результате снижения расхода водяного пара на существующем оборудовании (реактор, ректификационная колонна и конденсаторы-холодильники) дополнительно перерабатывается 50—60 т/ч свежего сырья. Производительность реакторного блока по данному варианту реконструкции увеличивается в 1,6 раза по сравнению с проектом. С учетом применения высокоэффективного цеолитсодержащего катализатора с редкоземельными элементами предусматривается довести массовую скорость подачи сырья в реактор до 20—25 ч- . [c.252]

    Одной из самых распространенных конструкций конденсаторов смешения является сухой полочный барометрический конденсатор (рис. VI П-29, а), работающий при противоточном движении охлаждающей воды и пара. В цилиндрический корпус 1 с сегментными полками 2 снизу через штуцер 3 поступает пар. Вода подается через штуцер 4 (расположенный на высоте 12—16 м над уровнем земли) и кас-кадно перетекает по полкам, имеющим невысокие борта. При соприкос- ювеинк с водой пар конденсируется. [c.339]

    Необходимо отметить, что все проектные данные были достигнуты. В колонне были смонтированы три слоя насадки ВАКУ-ПАК. Первый слой — высотой 3,3 м. Насадка укладывалась на металлическую выгородку по квадрату, со стороной квадрата 3,3 м и высотой слоя 2,69 м, второй слой укладывался внутри цилиндрической выгородки диаметром 7,4 м и высотой слоя 2,016 м. Третий слой укладывался внутри цилиндрической выгородки диаметром 7 м и высотой 2 м. Под каждым слоем имеется глухая по жидкой части тарелка желобчатого типа, откуда насосами забираются циркуляционные орошения колонны, а избыток с тарелки через переливные трубы сливается на нижележащие секции насадки. Ввод в колонну мазута из вакуумных печей П-3/1 и П-3/2 производится через 2 штуцера диаметром 1000 мм каждый. Под нижнюю тарелку отгонной части дается перегретый водяной пар давлением 0,7-1,0 МПа. Водяные пары и газы с верха колонны К-10 отсасываются двумя рядами параллельно работающих пароэжекторов и конденсируются в промежуточных поверхностных конденсаторах К-1, К-2, К-3. Сконденсированная часть водяных паров и газов из поверхностных конденсаторов уходит в барометрическую емкость Е-3. Несконденсированная часть газов после 3-ей ступени эжекции отправляется натермический дожигв печи П-3/1, П-3/2. Перед входом в печи эти газы попадают в глушитель выхлопа Е-27, где происходит дополнительная сепарация алаги. В вакуумную колонну предусмотрена подача нейтрализатора и ингибитора коррозии. Схема работы вакуумсоздающей системы принципиально не отличается от общепринятых. [c.109]


Смотреть страницы где упоминается термин Конденсатор цилиндрический: [c.29]    [c.78]    [c.65]    [c.189]    [c.55]    [c.101]    [c.268]    [c.245]    [c.35]    [c.46]    [c.12]   
Техника и практика спектроскопии (1976) -- [ c.143 ]




ПОИСК







© 2025 chem21.info Реклама на сайте