Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фториды, определение в почве

    Определение содержания фторидов в почве ионометрическим методом [c.294]

    Содержание фторидов в почве вычисляют по формуле Р = С У/т, где С - концентрация фторидов, найденная по градуировочному графику в мкг/10 см V - объем разложенной и подготовленной к определению почвы (50 смО т - навеска почвы. [c.295]

    Определение фторид-иона весьма важно при анализе питьевой воды. Контроль содержания фторида успешно может быть осуществлен с использованием фторидного ионоселективного электрода. Этот электрод можно использовать и для контроля содержания фторида в различных природных, сточных и морских водах, почвах и растительных материалах, в воздухе и сбросовых газах, что важно при решении проблем охраны окружающей среды. [c.120]


    Определение бериллия в почвах [717]. Бериллий экстрагируют фторидом аммония, а затем колориметрируют часть раствора с бериллоном II в присутствии комплексона III и Ы,Ы -ди-(2-оксиэтил) глицина для устранения мешающего действия других элементов. Таким путем можно определить в почвах 0,5. Ю- % Ве. [c.171]

    Определение рзэ в почвах и биологических объектах. После растворения образца, рзэ иногда определяют непосредственно (например, Се в золе костей и тканей определяют полярографическим методом [925] или некоторые элементы в золах известковой водоросли— флуоресцентным способом на твердом фосфоре [1785]). Однако в большинстве случаев, особенно при анализе почв [168, 312, 534], применение сложной схемы очистки является обязательным. Для этого используются обычные приемы осаждения оксалатов, гидроокисей и фторидов, а также специфичные приемы для отделения некоторых примесей. Учитывая, что количества рзэ в образце чрезвычайно малы (до 10" %), все операции выполняются в присутствии носителя, выбор которого определяется методом, завершающим анализ. При колориметрическом определении суммы [c.226]

    Для открытия и колориметрического определения малых количеств бора в почвах и растениях был предложен метод основанный на реакции бора с хинализарином в растворе, содержащем 93% (по массе) серной кислоты, в результате которой розовая окраска красителя переходит в синюю. В соответствующих условиях можно открыть такие малые количества бора, как 0,0001 мг, Фториды, германий, нитраты, гексацианоферраты (III) и другие окислители мешают реакции [c.844]

    При наличии в лабораториях ионоселективных электродов возможно применение метода прямой ионометрии для определения фторидов, иодидов и хлоридов в пробах. Сущность метода (ГОСТ 26425 — 85) заключается в определении разности потенциалов хлоридного ион-селективного и вспомогательного электродов, значение которой зависит от концентрации иона хлорида в растворе. В качестве вспомогательного используют насыщенный хлорсеребряный электрод. Метод хорошо отработан для определения иона хлорида в водной вытяжке почвы и может с успехом применяться для анализа водной вытяжки шлама и сильно загрязненного органическими веществами бурового раствора. [c.149]

    Определение общего содержания фторидов. Смешивают 1 г почвы с 10 г щелочного плава (калия-натрия карбоната), помещают в никелевый тигель и сплавляют в муфельной печи 4 ч при 900 °С. Затем плав дважды выщелачивают горячей водой и фильтруют через бумажный фильтр синяя лента . Фильтрат нейтрализуют 5 М хлороводородной кислотой, добавляют 10 г карбоната аммония для осаждения карбонатов железа и других металлов, выпаривают на водяной бане до удаления запаха аммиака. По окончанию выпаривания пробу фильтруют в полиэтиленовый цилиндр, дважды выщелачивают дистиллированной водой (горячей) и доводят до метки водой. Параллельно ставят холостой опыт, используя все указанные реактивы. [c.335]


    Определение водорастворимых (подвижных) форм фторидов. Помещают 10 г почвы в полиэтиленовый стакан вместимостью 100 мл, добавляют 50 мл воды. Содержимое стакана центрифугируют 15 мин, отбирают 10 мл, добавляют 10 мл буферного раствора и анализируют фториды, как описано выше. [c.335]

    В почвах ряд элементов (хром, молибден, кобальт и др.) находится в таком соотнощении с ванадием, при котором они не мешают его определению (хром к тому же улетучивается ири рекомендуемой нами обработке хлорной кислотой). Железа в почвах содержится довольно много (в Среднем 25—35 мг Ре в 1 г почвы). Экспериментами автора установлено, что мешающее влияние такого количества железа можно устранить, если увеличить концентрацию фосфорной кислоты до 3—5 М, а также дополнительно связать его в комплекс фторидом натрия после окисления ванадия до пятивалентного (ванадий может маскироваться фторидами только в четырехвалентном состоянии). [c.64]

    Фторид-ионов (общее содержание) определение в почвах и осадочных породах. В почвах и осадочных породах содержание фторид-ионов определяют с целью выявления в них флюорита, используя для этого фторид-селективный электрод 94-09 и электрод сравнения 90-01. [c.124]

    Описан метод определения фосфора в виде желтого фосфорномолибденового комплекса в почве и растениях [62] и в водном аммиаке особой чистоты [63]. Для уменьшения диссоциации комплекса рекомендовано применять ацетоновые растворы [64]. При определении фосфора в феррониобии, ферротитане и в ниобиевой руде [65] титан и ниобий маскируют фторидом, а фосфорномолибденовую кислоту экстрагируют метилизобутилкетоном. [c.107]

    Чирков [481] предложил метод определения алюминия потенциометрическим некомпенсационным титрованием фторидом, с использованием алюминиевого индикаторного электрода в паре с электродом из нихрома. Оптимальное значение pH 3—7, насыщение раствора хлоридом натрия увеличивает резкость скачка потенциала [311, 412, 481]. Метод Чиркова по сравнению с методом Тредвелла и Бернаскони имеет ряд преимуществ продолжительность титрования меньше и не нужно расходовать этиловый спирт. Метод Чиркова нашел широкое применение в лабораториях. Его используют для определения алюминия в стали [248, 418], в никелевых [95], цинковых [65] и магниевых [65, 66] сплавах, в шлаках [228], в почвах [8] и в других объектах. Исследованию этого метода посвящены работы [151, 202, 311, 312]. [c.87]

    Алюминий в почвах можно определять фотометрическими методами с алюминоном, оксихинолином и хромазуролом S. Если экстракт почвы бесцветный, то в нем сразу можно определить алюминий. Если он окрашен за счет органических веществ, то выпаривают досуха в присутствии 10 мл 30%-ной Н2О2. Если присутствуют фториды, то выпаривают досуха с 2 мл H2SO4 (уд. вес 1,84). Из подготовленного таким образом экстракта можно приготовить окрашенные растворы для фотометрического определения алюминия. Опре- [c.205]

    Потенциометрическое определение марганца основано на реакции окисления Мп(П) до Мп(1П) перманганатом калия в нейтральном пирофосфатном растворе [93—97, 147, 353, 422, 1181, 1410, 1414], бихроматом калия в 11,5—13,5 М Н3РО4 [1367—1369] или в присутствии фторидов [5, 144, 215, 216, 1272]. Этот метод применяют для определения как малых ( 0,1%), так и больших содержаний (до 90—95%) марганца. Вместо каломельного электрода, имею-ш,его ряд недостатков, часто применяют биметаллическую систему электродов Pt—W [353]. Определению марганца в нейтральном пирофосфатном растворе не мешают Fe(III), r(III), o(II), Ni(II), Mo(VI), W(VI), Al(III), Mg(II), Zn(II), u(II), d(II), a также небольшие количества (до < 0,03%) V (V). При больших содержаниях V(V) отделяют сначала MnOj [96, 584] или титруют при 60° С [776]. Влияние r(VI) устраняют восстановлением его до Сг(1П) введением NaNOj. Метод потенциометрического титрования марганца в этих условиях применяют при анализе цветных сплавов [95, 422, 584], ферромарганца и марганцевых руд [93, 94, 533, 1410], доломита, шлака [97], почв [643], сталей [94, 584], горных пород [584]. [c.48]

    Недеструктивный активационный метод применяется для определения ЗЬ в алюминии [841, 1688] и его сплавах [945], нитриде алюминия [421], аскорбиновой кислоте [1630], асфальте [982], висмуте [830, 1204, 1239] и его сплавах с сурьмой [48, 313], воздушной пыли [884, 13131, галените [21], германии [633, 1384, 1385], горных породах [230, 427, 541, 949, 1061, 1289], графите [106, 1207], железе, чугуне и стали [135, 884, 1128, 1129, 1556, 1652], индии [12711, карбиде кремния [468], кремнии [212, 762, 932, 950, 989, 1217, 1361], тетрахлориде кремния [1462] и эпитаксиальных слоях кремния [580], меди [1002], морских [642, 1427] и природных водах [4, 1040], нефти и нефтепродуктах [991, 1517], олове [1305], поли-фенолах [983], почвах [1528], растительных материалах [1316, 1528], рудах [466, 1270], свинце [835 -837, 1205, 1505, 1506], стандартных образцах металлов [1316], теллуре [5], титане [68], хроматографической бумаге [1409], циркалое [1099], эммитерных сплавах [625], трифенилах [8771 и фториде лития [331]. Благодаря высокой чувствительности и вследствие того, что для анализа, как правило, требуется небольшое количество анализируемого материала, эти методы часто используются в криминалистической практике [884, 892, 12961. Имеются указания [965] аб использова- [c.74]


    Определение загрязняюших почву неорганических вешеств методом потенциометрии с ИСЭ (обшее содержание фторидов, водорастворимые формы фторидов, нитраты и др.) практически мало отличается от аналогичного анализа загрязненной воды (см. раздел 6.6). [c.356]

    Исследования Бабко и Драко (1957) показали, что избыток ЗпСЬ вызывает ослабление интенсивности окраски молибден-роданидного комплекса, но в присутствии железа (Ре+ ) это менее заметно, так как оно реагирует с ЗпСЬ при ЭТОМ образуется значительное количество 5п+ что повышает окислительный потенциал системы 8п+ / 5п+2 и уменьшает восстановительную способность ЗпСЬ. В то же время установлена необходимость (Дик и Бенг-лей, 1947) присутствия небольщого количества железа при определении молибдена роданидным способом. В присутствии железа Мо+ полностью восстанавливается до Мо+5, а без железа до 40% молибдена в молекуле находится в трехвалентном состоянии, в связи с чем интенсивность окраски комплекса составляет только 60% от оптимальной. Присутствие в почвах микрограммовых количеств ванадия, вольфрама, хрома и других элементов не мешает определению молибдена роданидным способом. Они легко связываются в комплекс фторидами и не извлекаются органическими растворителями. Ванадий мешает при содержании его в почвах выше 500 мг/кг почвы, но в почвах в среднем его содержится около 100 М1г/кг [c.56]

    Железо извлекают из почвы кислотными вытяжками, которые кроме закисного переводят в раствор также и много окисного железа. При определении закисного железа в присутствии окисного в раствор вводят МаР для связывания Ре + в бесцветный комплекс, а избыток фторид-ионов связывают борной кислотой. Кислотность раствора снижают до pH 2,8—3,0 нейтрализацией ацетатно-натриевым раствором по индикатору тимолблау (Казари-нова-Окнина, 1938). Ацетат-ионы стабилизируют закисное железо. Если при нейтрализации происходит помутнение раствора, количество комплексирующих реактивов увеличивают. [c.385]

    Предложено сплавление с фторидом и дисульфатом, В этом случае летучие фториды удаляются при сплавлении. Используют смеси КР или NaP с КгЗ О, или Na- SjO , / Например, для определения Sr и Sr в почве пробу сплавляют со смесью КР и K2S2O7, расплав растворяют в разбавленной НС1, содержащей [c.73]

    Некоторые кислород- и серусодержащие руды сплавляют при низких температурах со смесью гидросульфата и хлорида (или нитрата) аммония. Гидросульфат аммония применяют для разложения сульфидов Ре, 2п, РЬ и Си. Смесь пиросульфата и фторида натрия эффективна для разложения касситерита. При определении и Яг в почве пробу сплавляют со смесью КР и К-гЗ-зО,, плав растворяют хлороводородной кислотой, содержащей пероксид водорода [Д.4.43—Д.4.471. А [c.89]

    Спектральный метод нашел широкое применение при анализе на содержание лития вод [153, 158], минералов и горных пород [160—168], меди П69, 170], кальция [171] огнеупоров [172], щелочей [173], плавиковой кислоты и фторида аммония [262], пергидроля [263] и калиево-литиевых электролитов [175]. Совместное определение Li и Rb в минералах описано в работах 158, 176, 177, 264] Li, Rb и s в почвах и минералах —в [155, 178—180]. Представляет интерес методика определения Li в сухом остатке после выпаривания вод путем возбуждения в пламени термитных ишшек [181]. Описаны методы определения в горных породах Rb [182], s [183], Rb и s в золах углей [184] и минералах [159]. [c.48]

    Карминовый метод определения бора применяют, как правило, при относительно высоком содержании бора в различных материалах куркуми-новым методом определяют меньшие его количества. Карминовым методом определяют бор в стали [69], молибденовых сплавах [66], цирконии и его сплавах [68], титане и его сплавах [17, 70], сплавах кобальта н никеля [70], сплавах урана с алюминием [71], нитрате уранила [72, 73], кремнии [74], стекле ]4, 75], искусственных удобрениях [19, 76], фторидах ]12, 77], почвах и растениях J65], водах [65], углеродных [78] и биологических материалах [79]. [c.121]

    Определение общего содержания фторидов и их водорастворимых форм основано на извлечении их из почвы, измерении активности ионов фтора на фоне буферного раствора (хлорида натрия и нитрата лантана с pH 5,8) с использованием фторидного электрода. Мешающее влияние железа (III) и алюминия устраняют путем маскирования ЭДТА и ацетат-ионами. Определению фторидов мешают катионы, образующие прочные фторидные комплексы (торий, цирконий). [c.294]

    Аналитическое применение фторидселективных электродов. К наиболее важным объектам, анализируемым с помощью этих электродов, относятся питьевая, сточные и морская воды [67, 137, 167, 198, 230, 323, 330, 331, 429, 431—433] и воздух [33, 50, 100, 148, 162, 229, 253, 271, 286, 309, 390, 448]. Фторидный электрод находит также использование при анализе фосфатов 48, 56, 79—81, 92, 289, 369, 402, 403], других пород и минералов 38, 131, 177, 182, 287, 298, 406, 436] и почв [65, 159, 199, 224, 252, 254] после растворения анализируемых объектов в минеральных кислотах или сплавления со смесью ZnO и Na2 0s. Примером использования электрода в медико-биологическом анализе (в качестве обзора см. [ПО]) служит метод определения до 2,5 мкг/л фторид-иона в плазме крови с применением [c.184]


Смотреть страницы где упоминается термин Фториды, определение в почве: [c.203]    [c.792]    [c.301]    [c.279]    [c.347]    [c.56]    [c.59]    [c.64]    [c.239]    [c.249]    [c.725]    [c.440]    [c.674]    [c.227]   
Санитарно химический анализ загрязняющих веществ в окружающей среде (1989) -- [ c.332 ]




ПОИСК





Смотрите так же термины и статьи:

Почва фторидами



© 2025 chem21.info Реклама на сайте