Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Детекторы атомно-эмиссионный

Рис. 7.4-14. Градиентное сканирование, основанное на выборе точки отсчета для разных времен задержки (каждое соответствует разному соотношению проба/реагент) [7.4-3]. В каждой точке детектор быстро сканирует диапазон длин волн (а), создавая таким образом дополнительное измерение для матрицы время—концентрация (б). Матрица состоит из ряда последовательных эмиссионных спектров, зарегистрированных на возрастающей и убывающей частях дисперсионной зоны, которая содержит Ка, К и Са, инжектированные в атомно-эмиссионный спектрометр с быстрым сканирующим монохроматором. Рис. 7.4-14. <a href="/info/762592">Градиентное сканирование</a>, основанное на <a href="/info/1727909">выборе точки</a> отсчета для разных <a href="/info/445206">времен задержки</a> (каждое соответствует <a href="/info/472362">разному соотношению</a> <a href="/info/274631">проба/реагент</a>) [7.4-3]. В каждой точке детектор быстро сканирует <a href="/info/1016462">диапазон длин волн</a> (а), создавая <a href="/info/461013">таким образом</a> <a href="/info/642658">дополнительное измерение</a> для матрицы <a href="/info/362912">время—концентрация</a> (б). Матрица состоит из ряда последовательных <a href="/info/2754">эмиссионных спектров</a>, зарегистрированных на возрастающей и убывающей частях дисперсионной зоны, которая содержит Ка, К и Са, <a href="/info/1155368">инжектированные</a> в <a href="/info/141079">атомно-эмиссионный спектрометр</a> с быстрым сканирующим монохроматором.

    На рис. 2.1 показана типичная блок-схема установки для спектрального анализа, состоящая из следующих основных компонентов J — источник света 2 — атомизатор 3 — спектральный прибор 4 — детектор (приемник) излучения 5 — регистрирующее устройство. (В атомно-эмиссионном методе, в котором используются высокотемпературные атомизаторы, они являются одновременно и источниками света (см. рис. 2.1,5).) В атомно-флуоресцентном методе источник света располагается, под углом 90° к оптической осн спектрального прибора (см. рис. 2.1, В). В настоящей главе описаны спектральные приборы, методы освещения щели, а также приемники излучения. [c.17]

    АЭД — атомно-эмиссионный детектор [c.133]

    АЭС основана на получении и детектировании линейчатого спектра, испускаемого в процессе излучательной релаксации электронов, которые претерпевают переход между верхними возбужденными уровнями и более низкими и основным уровнями. Эти электроны принадлежат внешним оболочкам атома и называются оптическими электронами. Линейчатый спектр специфичен для данного элемента, поэтому надлежащий выбор данной линии и ее выделение с помощью диспергирующей системы позволяет аналитику проверить присутствие этого элемента и определить его концентрацию. Атомно-эмиссионный спектрометр состоит из источника излучения, системы введения или транспортировки пробы, оптической диспергирующей системы, детектора и электроники для сбора, обработки и представления данных. [c.11]

    Атомно-эмиссионный детектор Рис. 14.2-10. Схема прибора для ГХ с атомно-эмиссионным детектированием. [c.616]

    При многомерной хроматографии удобно применять детекторы, предусматривающие библиотечный поиск (МС- или ИК-спек-трометры) или элементный анализ (атомно-эмиссионный детектор). Для надежной идентификации детектор должен давать одиночные, хорошо разрешенные пики. Использование сложных алгоритмов хемометрики позволяет с помощью компьютерной обработки получать данные по неразрешенным пикам, однако этот подход имеет свой ограничения. [c.79]

    Широко распространены в газовой хроматографии также пламенно-ионизационные детекторы, отличающиеся более высокой чувствительностью по сравнению с катарометрами. Иногда используются и специальные детекторы (электронозахватный, микрокулонометрический, инфракрасный и т. п.), высокоселективные по отношению к определенным группам соединений. В конце 80-х годов в практику введены атомно-эмиссионные детекторы, селективные при анализе элементов, например, серосодержащих компонентов нефтяных фракций. [c.121]


    Атомно-эмиссионный детектор (АЭД) [c.92]

    Возбуждающие атомы излучают свет с характерной длиной волны. В атомно-эмиссионном детекторе проба переводится в атомарное состояние, а образовавшиеся атомы переходят в возбужденное состояние. Для этого необходима значительная энергия, которая имеется в плазме, индуцированной микроволновым излучением. Переход возбужденных атомов в состояние с более низкой энергией сопровождается излучением света. Длина волны возникающего излучения измеряется спектрофотометром. [c.92]

    Этим требованиям в наибольшей степени соответствует газовая хроматография и гибридные методы, основанные на сочетании хроматографического разделения примесей токсичных веществ с последующим масс-спектраль-ным или ИК-Фурье-анализом элюата, а также методики, использующие селективное детектирование (электронозахватный, термоионный, пламеннофотометрический, хемилюминесцентный и атомно-эмиссионный детекторы, детектор Холла и др.) или приемы реакционной газовой хроматографии. [c.3]

    В идеальном случае особенно перспективными для этой цели являются сложные комбинации типа ГХ/МС/ИК-Фурье/атомно-эмиссионный детектор [12]. В практической аналитике загрязнений воздуха, воды и почвы необходимы газохроматографические методики, содержащие элемент идентификации (например, на основе РГХ см.табл. 1.14) и позволяющие достаточно просто и быстро найти на хроматограмме целевые компоненты и определить их с невысокой погрешностью и низким С . [c.46]

    Атомно-эмиссионный детектор 445 [c.445]

    Атомно-эмиссионный детектор (АЭД) в отличие от ААД позволяет детектировать сразу несколько элементов, причем с большим ЛДД [13, 108, 109]. При детектировании используются три основных источника возбуждения эмиссии гелиевая плазма, индуцируемая микроволновым излучением при низком или атмосферном давлении аргоновая плазма, возбуждаемая постоянным током и аргоновая плазма, индуцируемая током высокой частоты. Преимущества АЭД с плазменным возбуждением состоят в следующем  [c.445]

    Атомно-эмиссионный детектор 447 [c.447]

    Атомно-эмиссионный детектор 449 [c.449]

    Атомно-эмиссионный детектор 451 [c.451]

    Для идентификации и определения следовых количеств металлов в объектах окружающей среды (воздух, вода, почва, донные отложения, растительность, пищевые продукты и др.) чаще других применяют спектральные методы. Однако газовая хроматография, особенно с использованием в качестве детектора атомно-эмиссионного спектрометра, остается одним из основных методов анализа смесей металлорганических соединений и успешно применяется при определении микропримесей металлов (в форме аэрозолей) после их превращения в летучие комплексы с различными лигандами [207—209]. [c.382]

    Атомно-эмиссионный детектор (АЭД). АЭД также работает с использованием эмиссионных эффектов. Это злемент-специфичный детектор, основанный на атомной эмиссии злементов, таких, как К, Р, 8, С, 81, Н , Вг, С1, Н, О, Р или О. Атомизация и испускание света проходит в гелиевой микроволновой плазме (см. разд. 8.1). Детектирование эмиссии света проводится с использованием фотометра с диодной матрицей в двапазоне длин волн от 170 до 780 нм. [c.253]

    Хотя впервые сочетание газовой хроматографии с прямым элемент-специфич-ным детектированием с помощью оптической плазменной эмиссионной спектроскопии было осуществлено в середине 1960-х гг. Мак-Кормаком с сотр. [14.2-12] и Бахом и Диском [14.2-13], серийно вьшускаемый прибор, использующий этот гибридный метод, не был разработан до 1989 г. [14.2-14], после чего атомно-эмиссионный детектор (АЭД) стал самым современным дополнением к семейству спектроскопических газохроматографических детекторов. [c.614]

    СФХ также успешно сочетается с масс-спектрометрическим, ФПИК и атомно-эмиссионным детектированием. Благодаря природе подвижной фазы, используемой в СФХ (обычно это сверхкритический диоксид углерода, часто с добавками небольших количеств модификатора, например, метанола), требования к интерфейсу являются промежуточными между требованиями в случае газовой и жидкостной хроматографии. Поэтому существующие ГХ- и ЖХ-интерфейсы могут быть приспособлены с небольшими изменениями для успешной работы с различными типами спектроскопических детекторов. [c.635]

    Для определения пестицидов используется атомно-эмиссионный детектор с микроволновой плазмой. В принципе может быть достигнуто специфическое детектирование любого элемента периодической таблицы, который определяется методом ГХ. Пределы обнаружения для С, И, В, М, О, Вг, С1, Г, 8, 81, Р и Иg составляют порядка 0,1-75 пг/с, причем селективность составляет не менее 19 ООО. Рассматриваемая система может быть применена для обнаружения и охарактеризования 27 пестицидов получают специфические для различных элементов хроматограммы (С, И, М, О, Вг, С1, Р, Р и 8). Проведя количественный анализ для каждого элемента, можно рассчитать эмпирическую формулу 20 различных гербицидов, содержащихся в двух смесях. [c.129]


    При определении пестицидов в соответствии с методами Управления по охране окружающей среды в настоящее время используются газохроматографические детекторы, селективные по отношению к галогенам, сере, азоту и фосфору. Однако электроноза-хватный детектор и детектор по электропроводности не позволяют дифференцировать Р, С1 и Вг. В пламеннофотометрическом детекторе может наблюдаться гашение. Сигнал этого детектора нелинеен. Пестициды содержат различные гетероатомы, поэтому их было бы целесообразно анализировать методом ГХ с атомно-эмиссионным детектором и микроволновой гелиевой плазмой. Используя этот метод, можно получить полные элементные профили и/или детектировать индивидуальные элементы в молекулах. Иа рис. 8-34 и 8-35 представлены специфические хроматограммы элементов, входящих в состав диазинона и арохлора соответственно. Одновременно с этим определяют С, 8 и М, применяя для продувки кислород и водород. [c.129]

    Описан [1573] комбинированный метод атомно-эмиссионного определения ЗЬ, основанный на предварительном выделении ее в виде (СбНб)зЗЬ, газохроматографическом отделении от (СбНБ)зАз и введении его в атомно-эмиссионный детектор с применением УВЧ-плазмы в качестве атомизатора [1571, 1572]. [c.95]

Рис. VIII.30. Хроматограмма хелатов металлов — М,М -этиленбис(5,5-диметил-4-оксо-гексан-2-имин)меди, никеля и палладия, записанные с помощью атомно-эмиссионного детектора [И]. Рис. VIII.30. Хроматограмма <a href="/info/382191">хелатов металлов</a> — М,М -этиленбис(5,5-диметил-4-оксо-гексан-2-имин)меди, никеля и палладия, записанные с помощью <a href="/info/856965">атомно-эмиссионного</a> детектора [И].
    Наиболее часто используются различные электрохимические детекторы, например система детектирования из кондуктометриче-ского детектора (прямого или косвенного) и подавляющей колонки, установленной перед детектором и предназначенной для снижения фоновой электропроводности. С этой целью применяют солевые формы ионообменных смол, а также полые волокна или микромембран-ные устройства. Применяют также амперометрические (на электродах из стеклоуглерода, Аи, Ag, и др.), спектрофотометрические (в диапазоне длин волн 190-800 нм), флуорометрические, масс-спектрометрические, рефрактометрические, атомно-эмиссионные с инд тстивноч вязанной плазмой, атомно-абсорбционные детекторы. [c.95]

    Измерения интенсивности спектральных линий в атомно-эмиссионном спектраньном анализе могут осуществляться визуальным, фотографическим и фотоэлектрическим способами. В первом случае приемником излучения служит глаз, во втором — фотоэмульсия (фотохимический детектор), в третьем — фотоэлектрический детектор. Каждый способ имеет свои преимущества, недостатки и оптимальную область применения. [c.391]

    Существенным ограничением ПИА является сложность хфоведения многокомпонентных определений, а также одновременного определения двух и более компонентов из одной микропробы. Эта проблема может быть решена, по крайней мере, двумя способами 1) применением многокомпонентных детекторов (например, атомно-эмиссионного спектрометра с индуктивно связанной плазмой), созданием и использованием потокораспределительных систем с двумя и более детекторами 2) сочетанием кинетических тфинцнпов ПИА с динамическим детектором. Подход состоит в непрерывном сканировании физического параметра вдоль градиента концентрации образца, образующегося при движении инжектируемой микропробы в потоке носителя. [c.416]

    Для детектирования в ПА используют самые разнообразные оптические (спектрофотометрия, флуоресценция, пламенная атомноабсорбционная спектрометрия, атомно-эмиссионная спектрометрия с индуктивно связанной плазмой) и электрохимические (амперометрия, иономстрия и инверсионная вольтамперометрия) методы анализа. ПА не накладывает каких-либо принципиальных ограничений на выбор метода детектирования. К идеальному детектору в ПА предъявляются следующие требования быстродействие (время отклика не более 5 с) низкий шум и высокая чувствительность воспроизводимость и стабильность отклика  [c.417]

    Около 0,003 мг/мЗ люизита в воздухе можно надежно идентифицировать и определить количественно с ПФД в виде циклического соединения после реакции с 1,2-этандитиолом [259[. Следовые количества люизита и иприта извлекали из воздуха в концентрационной трубке-реакторе, в которой они превращались в производные и после десорбции анализировались одновременно с ПФД и атомно-эмиссионным детектором [260]. Разработан переносный газовый хроматограф, оснащенный ПФД и масс-селективным детектором и позволяющий в автоматическом режиме фиксировать ОВ и побочные продукты их производства после предварительного сорбционного концентрирования [261]. [c.340]

    Способ реакционно-хроматографического определения O I2, описанный в работе [228], использовали и для определения фосгена в местах захоронения ОВ [229]. Летучие токсичные вещества улавливались в трубке с амберлитом ХАД-2, модифицированным N,N-ди(н-бyтилaминoм), десорбировались смесью толуол-метанол, концентрировали экстракт в слабом токе азота и анализировали полученный конденсат на кварцевой капиллярной колонке (25 м х 0,17 мм) с НР-1, используя атомно-эмиссионный детектор или масс-спектрометр в качестве детектора. Температура колонки программировалась в интервале от 40°С (2 мин) до 250°С со скоростью 10°С/мин. [c.357]

    Принципиальная возможность сочетания газовой хроматографии с ВЭЖХ, атомной абсорбцией, масс-спектрометрией или атомно-эмиссионной спектрометрией позволяет успешно использовать эти методы для определения следов металлов в объектах окружающей среды. Техника газовой хроматографии летучих хелатов металлов (комплексы металлов с ацетилацетоном, три- и гексафторацетилацетоном, диалкилдитиокарбаминатами и их фторированными аналогами и др.) основана на использовании капиллярных колонок с химическими связанными силиконами, программирования температуры и применении ионизационных (ПИД, ЭЗД, ПФД и др.) или спектральных (ААС, АЭД, МПД и др.) детекторов (табл. УП.27). [c.383]

    ДТП — детектор по теплопроводности ГВ — газовые весы (плотномер) УЗД — ультразвуковой детектор ПИД — пламенно-ионизационный детектор ПИДВА — пламенно-ионизационный детектор с водородной атомосферой ФИД — фотоионизационный детектор ТИД — термоионный детектор ГИД — гелиевый ионизационный детектор ЭЗД — электронно-захватный детектор ПФД — пламенно-фотометирческий детектор МС — масс-спектрометр ИКС — ИК-спектрометр АЭС — атомно-эмиссионный спектрометр ААС — атомно-абсорбционный спектрометр ЭДХ — электролитический детектор Холла [c.395]

    Пламенно-фотометрический Электролитический кондукто-мерический (детектор Холла) Атомно-эмиссионный Хемилюминесцентный серный Электрохимический Фотоионизационный Импульсный пламенный фотомер [c.424]

    Перспективы применения атомно-эмиссионных детекторов в газовой хроматографии обсуждаются в работах Удена [И, 109, 114]. Все модификации АЭД обладают высокой специфичностью и применяются для идентификации элементов в ЛОС и неорганических газах. Аргоновый плазменный детектор [115] применяют при прямом определении агрессивных неорганических соединений (НС1, I2, O I2, N02H др. газы). Хроматограф из стекла и тефлона с АЭД фиксирует хлор при его содержании на уровне 0,1 ррт. Еще [c.449]


Смотреть страницы где упоминается термин Детекторы атомно-эмиссионный: [c.262]    [c.225]    [c.135]    [c.96]    [c.595]    [c.820]    [c.418]    [c.6]    [c.116]   
Анализ воды (1955) -- [ c.16 , c.26 , c.30 , c.33 , c.37 , c.171 , c.172 , c.177 ]




ПОИСК





Смотрите так же термины и статьи:

Детекторы эмиссионные

гом эмиссионный



© 2025 chem21.info Реклама на сайте