Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Время релаксации концентрации

    Время релаксации концентрации вблизи критической точки смешения велико по сравнению с характерными временами изменения скорости. Поэтому при интегрировании [c.235]

    Квазистационарность процесса массопередачи в пленках является следствием их малой толщины. Действительно, если объем пленки много меньше объема ядра, то за время установления равновесных концентраций в пленке (время релаксации) концентрация в ядре не успевает сколько-нибудь значительно измениться. [c.56]


    После выключения разряда (снятия электрического поля) существенную роль в установлении ФР начинают играть столкновения электронов с возбужденными частицами, время релаксации концентрации которых может быть существенно больше, чем время [c.82]

    Начала количественной теории сильных электролитов, разработанные Дебаем и Хюккелем (1923), имели целью отразить влияние этого электростатического взаимодействия между ионами на различные свойства раствора. Эта теория, учитывающая взаимодействие иона с окружающей его ионной атмосферой, дала возможность установить количественную связь между радиусом этой атмосферы и концентрацией электролита, определить скорость восстановления ионной атмосферы при перемещении иона (время релаксации— см. 168) и решить ряд других вопросов, важных для понимания процессов прохождения тока через раствор. Однако теория построена на ряде упрощающих допущений и до настоящего времени применима лишь к растворам с очень низкой концентрацией. [c.393]

    Нестационарные концентрации промежуточных образований каталитического цикла. При гетерогенном катализе на твердых катализаторах — это поверхностные концентрации реактантов и продуктов их превращений, участвующих в цикле элементарных этапов каталитической реакции. Концентрации поверхностных веществ изменяются в результате осуществления стадий каталитического процесса со скоростью, близкой по порядку к скорости химического превращения. Для реакций, достаточно быстрых, чтобы представлять практический интерес, время релаксации поверхностных концентраций лежит большей частью в интервале от 1 до 100 с. [c.28]

    При малых отклонениях от термодинамического равновесия, вызываемых слабыми внешними полями, скорости прямых и обратных реакций (УП.7.1) практически одинаковы. Концентрации реагирующих частиц в правой и левой частях совпадают, и, следовательно, константы скорости прямой к и обратной А .у реакций не различаются /1/. Рассматривая различные состояния молекул жидкого алкана как состояния молекул идеального раствора, имеем (см. /1, с, 194/) соотношение, связывающее время релаксации Тр-р с концентрациями участвующих в элементарной реакции веществ и стехиометрическими коэффициентами уравнения (УП.7.1)  [c.164]

    Время релаксации т определяет время установления нового равновесия в системе. Если т измерять при различных начальных концентрациях [А]о и [В]о, то по зависимости 1/т от ([А]о- - [В]о) можно найти k и k-i. [c.31]


    Смещение зависимости Ig Умакс =/(1/Г) в сторону низких температур означает, что с понижением концентрации полярных групп в по-лимерной цепи время релаксации уменьшается. [c.246]

    Существенное влияние на релаксационные диэлектрические потери оказывает также пластификация полимеров. С ростом концентрации пластификаторов в полимере время релаксации, как правило, уменьшается, а область максимума дипольно-сегментальных потерь сдвигается в сторону низких температур, поскольку пластификация, как правило, существенно снижает температуру структурного стеклования. [c.248]

    При изучении взаимодействия профлавина с трипсином (схема 9.9) методом температурного скачка [14] было найдено одно время релаксации, зависящее от концентраций реагентов (табл. 15). Определить значения элементарных констант скоростей реакции [c.199]

Рис. 102. Определение элементарных констант скоростей комплексообразования трипсина с профлавином с помощью релаксационного метода т — времена релаксации при различных значениях равновесной концентрации реагентов Рис. 102. Определение <a href="/info/1491160">элементарных констант скоростей</a> комплексообразования трипсина с профлавином с помощью <a href="/info/10756">релаксационного метода</a> т — <a href="/info/3893">времена релаксации</a> при <a href="/info/736172">различных значениях</a> <a href="/info/5397">равновесной концентрации</a> реагентов
    Снижение эквивалентной электропроводности электролита при увеличении концентрации можно представить себе наглядно. Пусть при движении центрального иона в электрическом поле ионная атмосфера возникает перед ним и исчезает позади него. Появление ионной атмосферы происходит с некоторой задержкой времени (релаксацией). Время релаксации обратно пропорционально концентрации и заряду ионов, а также электропроводности. В результате движения иона равнодействующая всех зарядов ионной атмосферы смещается назад по движению ионов, иначе говоря, ионная атмосфера деформируется, становится асимметричной и поэтому тормозит движение центрального иона из-за электростатического взаимодействия (эффект релаксации). Кроме эффекта релаксации возникает также электрофоретическая сила. Она создается вследствие того, что ионная атмосфера состоит преимущественно из ионов противоположного знака и при движении в направлении, противоположном центральному иону, увлекает за собой молекулы растворителя в результате возникают как бы дополнительные силы трения. Обе эти силы обратно пропорциональны радиусу [c.332]

    Наиболее точно времена релаксации и можно измерить в импульсном режиме ВКГ (релаксационный метод). При концентрации атомов водорода в колбе-накопителе, много меньшей пороговой для возникновения непрерывной генерации, сигнал излучения с к = 2 см, возбуждаемый коротким 90°-ным импульсом резо- [c.304]

    Время релаксации т — время обратимой химической реакции, не достигшей состояния равновесия, когда система приближается к состоянию равновесия в е раз, т. е. время, за которое в е раз уменьшится разница концентраций С — С или — С (С — равновесная концентрация реагента). [c.10]

    Если бы облако мгновенно возникало и исчезало, то ион всегда был бы в центре ионного облака и ионное облако не вызвало бы торможения. Но на образование ионной атмосферы и на ее разрушение требуется определенное время — время релаксации. В этом случае, чем быстрее движется ион, тем больше будет асимметрия (рис. 16) в положении центрального иона относительно ионной атмосферы. В результате ион будет находиться под влиянием внутренней разности потенциалов, при движении будет происходить торможение иона, что вызывает снижение подвижности ионов и электропроводности с увеличением концентрации электролита. [c.71]

    Величина 0 для данного растворителя и электролита зависит только от концентрации, так как все остальные величины постоянные. Подставляя численное значение постоянных, получим для водного раствора одновалентного электролита 0 10 /с. Если концентрация 0,001 п., то время релаксации будет 10 с, для 0,0001 н. — 10 с и т. д. По мере того как концентрация будет возрастать, время релаксации будет уменьшаться. [c.94]

    Согласно теории сильных электролитов Дебая — Хюккеля, каждый ион полностью диссоциированного электролита окружен ионами, создающими поле противоположного знака. Такое распределение ионов в пространстве называется ионной атмосферой. При наложении внешнего поля центральный ион и ионная атмосфера, как обладающие зарядами, одинаковыми по величине, но обратными по знаку, движутся в противоположные направления. Силы меж-ионного взаимодействия вызывают торможения, растущие с увеличением концентрации, и, следовательно, уменьшающие эквивалентную электрическую проводимость. Движение ионной атмосферы в сторону, противоположную центральному иону, вызывает электрофоретическое торможение, обусловленное движением сольватированного иона против потока сольватированных ионов ионной атмосферы. Второй эффект торможения обусловлен нарушением симметрии расположения ионной атмосферы вокруг центрального иона при его движении под действием поля. Движение приводит к разрушению ионной атмосферы позади иона и образование ее на новом месте. Для этого требуется время релаксации, и потому позади движущегося иона всегда находится некоторый избыток заряда противоположного знака, тормозящего его движение. Это торможение называют релаксационным. На скорость движения иона в растворе влияет вязкость среды, создавая дополнительный эффект трения, который учитывается уравнением Стокса /т = 6ят]гу, где /т — спла трения т) — вязкость растворителя г — радиус иона V — скорость движения иона. [c.272]


    Рассмотренная выше кинетическая модель характеризовала стационарный режим протекания реакций. В этом случае при любом изменении концентраций промежуточных соединений быстро принимают новые, постоянные во времени (стационарные) значения при этом достижение нового стационарного режима должно происходить со временем релаксации, меньшем времени протекания реакции. Однако вследствие таких сторонних воздействий , как влияние реакционной среды на катализатор, постепенное блокирование поверхности побочными продуктами и образующимся коксом, время релаксации может быть более длительным, чем время самой реакции, и тогда каталитический процесс будет осуществляться целиком в нестационарном режиме. [c.82]

    Так как время релаксации обратно пропорционально концентрации [см. уравнение (V,57)], например для КС1 при 18°С [c.119]

    Такая зависимость связана с тем, что при больших напряженностях на ионы действуют силы, которые достаточны для разрушения ионной атмосферы, поэтому ионы движутся как бы свободно и электропроводность при любых концентрациях становится равной Я.ОО. Подобный эффект наблюдается при повышении частоты. При высокой частоте, когда время одного колебания становится меньше времени релаксации, ионная атмосфера не успевает измениться при колебаниях иона, поэтому не происходит нарушения ее симметричности и торможение ионов падает. Для одно-одновалентного электролита время релаксации обратно пропорционально концентрации [c.358]

    АГ([А]р+ [В]р) , де т—время релаксации, [А]р и [Ер] — равновесные концентрации 2,4-динитрофенола и три-н-бутиламина соответственно [c.108]

    Действие релаксационных сил вызвано тем, что во время движения ионов впереди них создается новая ион- ная атмосфера, в то время как старая ионная атмосфера позади иона исчезает. Но эти изменения не могут происходить мгновенно. Представим себе картину исчезновения ионной атмосферы в том случае, когда центральный ион внезапно извлечен из раствора. Рассасывание, перестройка в расположении ионов от ориентированного к беспорядочному, хаотическому будет происходить не мгновенно, а в течение некоторого времени, точно так же, как и при внесении иона в раствор, создание вокруг него ионной атмосферы требует некоторого времени т. Это время называется временем релаксации. Оно может меняться в пределах 10 —10 сек в зависимости от температуры, диэлектрической проницаемости, концентрации раствора и других факторов. Ионная атмосфера рассасывается вследствие диффузии ионов, и поэтому величина т зависит также от коэффициента диффузии. Для бинарного электролита время релаксации приближенно определяется уравнением [c.113]

    Из выражения для функции А (/, os 0) (2.18) следует, что время релаксации профилей концентрации определяется значением t = 1/2, т. е. [c.286]

    Видно, что время релаксации профилей концентрации и [c.314]

    Различные времена релаксации концентрации ПМЦ и межплокостного расстояния указывают на возможносиь существования двух цроцессов  [c.119]

    Нами замечено, что при концентрациях в продукте ароматических углеводородов выше О,6-0,8% интенсив-( ность поглощения снижается, а атом случае парамагнитные частицы сближаются друг с другом так. что электронные облака неспаренных электронов перекрываются. Одновременно может происходить обмен электронами между отдельными частицами, так как сильное спин-спиновов взаимодействие резко измен яет время релаксации. [c.52]

    Условие инвариантности комбинаций удля упругих столкновений выполняется автоматически при любых максвелловских функциях fi. fj с произвольными нормировками. Формально можно считать, что смесь нереагирующих компонент является "химически равновесной", если функции распределения имеют максвелловский вид. Хотелось бы отметить, что такой подход имеет физический смысл, поскольку частицы с разной поступательной энергией вносят различный вклад в процессы установления равновесия. Кстати, именно на этом основана модель Ван-Чанга—Уленбека—де Бура, где вводится множественная система квантовых уровней, при которой фактически отсутствуют упругие столкновения и каждое столкновение приводит к изменению уровня. Частицы с неодинаковой кинетической энергией при этом обладают как бы различной химической активностью в процессах неупругого рассеяния. После расчета коэффициентов переноса в такой системе частицы на различных уровнях вновь считаются одинаковыми, и их концентрация находится простым суммированием. Такое объединение упругих и неупругих процессов позволило рассчитать характеристики переноса (сдвиговую и объемную вязкость, время релаксации) многоатомнь1х газов. В этой трактовке условие детального баланса представляет собой частный, вырожденный случай закона действующих масс (с условием,ДЕ= 0). [c.31]

    Исследовались термически активированные перераспределения атомов углерода в бинарных сплавах со свободной поверхностью. Установлено условие поверхностной сегрега1ши атомов углерода. Выявлена возможность проявления экстремальности в зависимости концентрации углерода в междоузлиях определенного типа от времени. Установлена возможность значительного влияния примеси замещения в металле на растворимость углерода. Рассчитано время релаксации процесса перераспределения атомов углерода. [c.141]

    Практически одинаковая концентрация протонов в воде и пефпг, а также независимость измеряемого общего флюидосо-держания от породы жидкости позволяет работать с образцами, пасыщепными как пластовой водой, так и нефтью. Время релаксации воды и различных нефтепродуктов резко отличается друг от друга. Последнее позволяет, не экстрагируя образец быстро п точно определить количество воды и нефти непосредственно в только что поднятом пли запарафинированном образце. Импульсный ЯМР с применением импульсного градиента магнитного поля позволяет за 5—10 минут определить средний радиус пор коллектора [5]. [c.108]

    Здесь Лпо —начальное (при включенном поле) двулучепреломле-ние т—время релаксации, зависящее, в общем случае, от концентрации. При экстраполяции концентрации к нулю можно оценить коэффициент вращательной диффузии и линейные размеры макромолекул. [c.265]

    Значение гиромагнитного отношения для ядра зна чительно меньше, чем для протона (см. табл. 1 приложения). Резонансная частота поглощения в поле 1,12 10 А/м равна 24,288 МГц. Кроме того, величина у входит в уравнение для фактора насыщения, и потому сигналы ЯМР ядер меньше насыщаются, чем сигналы протоноЕ , так как время релаксации для ядер Р в жидком состоянии примерно такое же, что и для ядер Н, т. е. 0,01 —10 с. При равной концентрации ядер Ф и 44 чувствительность ядер фосфора составляет 6,63 % чувствительности протонов. Следо1зательно, для измерения спектров ЯМР Р растворы должны быть более концентрированные. При этом нужно учесть, что большой диапазон химических сдвигов ядер Ф (500 м. д. и более) дает возможность использовать большую скорость развертки для определения химических сдвигов. В свою очередь, это дает возможность работать при большей мощности радиочастотного поля Н , чем при использовании протонов, что способствует повышению чувствительности метода. [c.146]

    Увеличение скорости релаксации протонов или другого магнитного ядра растворителя при введении парамагнитных ионов обусловлено взаимодействием магнитное ядро — несиаренный электрон при образовании сольвата и наличием быстрого обмена между связанными и несвязанными молекулами растворителя, причем усредненная скорость релаксации определяется формула,мн (6.15) — (6.16), в которых концентрация связанного растворителя равна пс . где п — число молекул растворителя во внутренней сфере комплекса. При комплексообразовании происходит вытеснение сольватиру-ющих молекул лигандом, число п уменьшается, вследствие чего скорость релаксации уменьшается. Измеряя время релаксации ядер растворителя, можно получить сведения о составе образующихся комплексов, определить их константы устойчивости. [c.317]

    Быстро устанавливающимися являются кислотно-основные равновесия вследствие больших значений констапты скорости перехода протона между истинными кислотами и основаниями (см. табл 14). Это относится и к образованию электростатических и ван-дер-ваальсовых комплексов и комплексов с водородными связями, так как ассоциация, как правило, не сопровождается преодолением какого-либо существенного энергетического барьера и идет со скоростью, определяемой диффузией, т. е. имеет порядок Ю<о М -с . Таким образом, даже если один из компонентов присутствует в концентрации 10 М, этого достаточно, чтобы время релаксации было порядка 1 мкс. [c.280]

    Попав в область с другой скоростью осевого переноса, вещество остается там некоторое время / >. Это время можно трактовать как время релаксации осевого диффузионного потока, в течение которого этот поток определяется не локальным осевым градиентом концентрации, а молярным адвективным переносом [8]. Связь между потоком и градиентом концентрации в этом случае не локальна и не мгновенна система обладает некоторой памятью [8,9]. Это свойство эредитарности (наследственности) становится существенным, когда время релаксации оказывается не малым в сравнении с другими характерными временами, в течение которых в системе происходят существенные изменения (химические превращения, пребывание в реакторе и т.п.). В этом слз чае можно говорить о новом (дисперсионном) механизме продольною перемешивания как о процессе слу чайного блуждания вдоль оси аппарата, и в этом слу тае возможен переход к дисперсионной (волновой) модели массопереноса [8]. [c.10]

    Процедура построения во]гаовой модели описана в [6] и связана с оценкой четырех параметров. Один из них, макроскопический коэффициент линейной объемной химической реакции АГ , присутствует и в диффузионной модели. Три других характерны лишь для волновой модели. Это - среднее время релаксации дисперсионного процесса 0, оцениваемое как среднее времен поперечного выравнивания концентраций в пристенной и ценфальной областях реактора [c.10]

    Известно, что при увеличении интенсивности наводороживания (скорости накопления водорода) быстрее происходит разрушение стали и при меньших концентрациях водорода. Это связано с изменениями условий релаксаций внутренних напряжений. При низких внешних нагрузках либо при незначительной агрессивности коррозионной среды, когда обеспечивается слабый диффузионный поток водорода, возникшие напряжения успевают частично релаксироваться за счет локальной пластической деформации у краев образовавшейся трещины, поэтому последняя не растет. В этом случае время релаксации значительно меньше времени нарастания напряжений. При интенсивном наводороживании внутренние напряжения быстро нарастают, и процессы релаксации не успевают происходить даже в начальный период наводороживания. В результате блокирования водородом дислокаций подвижность их постепенно уменьшается, что приводит к локальному упрочнению металла. При достижении критических концентраций водорода, когда у краев трещины полностью теряется подвижность дислокаций, происходит хрупкое разрушение металла без следов пластической деформации. [c.40]

    Кинегяческяе свойства систелгы обусловлены подвижностью молекул или атомов. В растворах полимеров присутствуют большие макромолекулы, время релаксации которых очень велико. Поэтому все процессы в истинных растворах полимеров происходят очень медленно, что делает их похожими па коллоидные системы. Но в отличие от коллоидных систем, малая скорость процессов, происходящих в истинных растворах полимеров, не связана с неравновес-ностью системы. Истинные растворы полимеров — это термодинамически устойчивые равновесные системы. Состояние равновесия устанавливается в них очепь медленно вследствие очень больших времен релаксации цепных молекул, причем время релаксации тем больше, чем выше концентрация полимера в растворе-Рассмотр1Ш это явление подробнее. [c.331]

    Если полимер склонен к студне-образованию, можно приготовить студни различной концентрации, Все они При комнатной температуре не обладают текучестью. Для раз-бав ттенных студней (2—20%) желатина, агар-агара, технического ксантогената целлюлозы и др, характерно отсутствие частотной зависимости деформации при комнатной температуре с изменением частоты в 1000 и более раз (рис. 188). Это указывает на малтые времена релаксации, в течение которых осуществляются молекулярные перегруппи  [c.429]

    Был приведен расчет константы скоростей и времени релаксации согласно уравнению (1). Результаты, приведенные в таблице, показывают, что времена релаксации, характеризующие скорость изменения структуры кристаллита, велики и уменьшаются с ростом давления и температуры. Такие значительные времена релаксации свидетельствуют, что процесс нзменения межслоевого расстояния с1оо2 контролируется медленными процессами, связанными с перестройкой структуры. Наличие высокой концентрации ПМЦ порядка одного на 10 —10 атома указывает на участие в процессе термолиза макрорадикалов. Оценка энергии активации изотермы реакции дает значение Ео=11,4 кДж/моль, сопоставимую только с энергией активации диффузии, это подтверждает выводы о диффузионном характере процесса. Таким образом, при формировании карбоидов имеет место клеточный эффект. Изменение относительной молекулярной массы остатка и концетрации ПМЦ во времени имеет характер диктуемый соотношением процессов инициирования и рекомбинации макрорадикалов. Выделяются три кинетических области 1 — где преобладает инициирование, 3 — где преобладает гибель и И — область стационарной концентрации. Времена релаксации рассчитаны для области П1 — составляют для температуры - 170° С и давления 5 2,5 0,4 МПа соответственио 2,33 0,25 и 0,5 ч, что существенно нин е времени релаксации структуры кристаллитов крабоидов, очевидно, росту последних предшествует рекомбинация микрорадикалов в глобусах, образованных ассоциатами асфальтенов и формирование мезофазы. [c.97]


Смотреть страницы где упоминается термин Время релаксации концентрации: [c.134]    [c.24]    [c.189]    [c.196]    [c.164]    [c.4]    [c.231]    [c.115]    [c.460]    [c.280]   
Электрохимия растворов издание второе (1966) -- [ c.122 ]




ПОИСК





Смотрите так же термины и статьи:

Зависимость времен релаксации цепи от концентрации

Релаксация время

время релаксации Сжу время релаксации при



© 2025 chem21.info Реклама на сайте