Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серная в соде

    Железо-ториевый шлам перерабатывают следующим образом шлам обрабатывают раствором сериой кислоты и хлористого калия, причем образуется труднорастворимая двойная соль —сульфат тория и калия, а железо и алюминий переходят в раствор. Чтобы полностью очистить эту двойную соль, содержащую еще некоторое количество железа, к отфильтрованному осадку приливают раствор соды. При этом образуется двойная растворимая соль — карбонат тория и натрия, а железо выпадает в осадок. Торий затем осаждается из двойной соли в виде карбоната серной кислотой. Осадок растворяют в азотной кислоте и переводят в нитрат тория. [c.85]


    Указанные фракции сначала промывали 75%-ной серной кислотой, 10%-ным раствором соды и водой, а после сушки над хлористым кальцием перегоняли в присутствии металлического натрия в тех же температурных пределах. [c.29]

    Деароматизированные фракции промывались водой, 10%-ным раствором соды, снова водой, сушились над хлористым кальцием и перегонялись над металлическим натрием, после чего для них определялись те же константы, что и до обработки серной кислотой. По депрессии анилиновых точек с помощью коэффициентов, приведенных в книге [20], определялся групповой состав для вышеуказанных фракций. [c.133]

    При нарушении правил безопасности возможны отравления парами ртути, ожоги паром и горячим рассолом, поражения электротоком, химические и термические ожоги каустической содой, серной и соляной кислотами, а также травмы при обслуживании ц ремонте оборудования. [c.50]

    Серная кислота, т. . Сода каустическая, т Сода кальцинированная, т....... [c.152]

    Сырые нефти обычно содержат большой процент асфальтенов (нефти асфальтового основания), от которых невозможно избавиться простой перегонкой, и нафтеновых кислот, которые удаляются при перегонке в присутствии каустической соды. Масляные фракции выделяются перегонкой, но зачастую они настолько широки, что возникает потребность во вторичной ректификации. Очистка с применением селективных растворителей заменила очистку с применением серной кислоты и каустической соды. [c.495]

    В виде 20%-НОГО водного раствора. Техническую серную кислоту и каустическую соду (40%) добавляют непосредственно в мешалку. Перемешивание сырья с раствором коагулятора длится до 1 ч, отстой продолжается 4—6 ч, температура масла при отстое поддерживается в пределах 70—90° С. [c.243]

    После сборки машины монтируют циркуляционную и цилиндровую системы смазки. После контрольной сборки маслопроводы разбирают и очищают от ржавчины и грязи, травят 10%-ным раствором серной или соляной кислоты с ингибиторной присадкой, затем нейтрализуют 15%-ным раствором каустической соды в течение 15 мин, промывают теплой водой и сушат горячим воздухом. После этого трубопроводы смазывают цилиндровым маслом и устанавливают на место. [c.151]

    При выделении бутадиен-стирольных каучуков, полученных в присутствии мыл карбоновых кислот, в качестве электролитов используются хлорид натрия, очищенный от примеси солей кальция и магния осаждением их из раствора в виде гидроокиси и карбонатов (при введении щелочи и соды), и серная (или реже уксусная) кислота. Для снижения расхода электролита на коагуляцию в латекс для предварительной агломерации частиц обычно вводят небольшие количества раствора костного клея (2—3 кг на [c.260]


    В настоящее время имеется около 2000 ГОСТов на химическую продукцию, по которым выпускается около 8% общего ее объема. Наиболее полно в ГОСТах отражена продукция основной химической промышленности, па которую имеется 130 ГОСТов, на красители— ПО, на органические полупродукты — 85, на краски и эмали — 60. Степень охвата стандартами основных видов продукции по объему выпуска составляет в нефтехимической и нефтеперерабатывающей промышленности — 95,0—98,0%, в производстве минеральных удобрений 90,0%, серной кислоты и соды 100,0%, реактивов и особо чистых веществ 85,0°/о, лакокрасочных материалов 65,0% Наиболее низок уровень стандартизации в производстве пластических масс (26%), изделий из них (3—4%), а также в производстве резиновых и асбестовых технических изделий. [c.118]

    В производстве синтетических катализаторов крекинга и полярных адсорбентов, занимающих в настоящее время доминирующее положенпе, используют большое количество разнообразных материалов силикат-глыбу, гидроокись алюминия, сульфат магния, серную кислоту, каустическую соду, аммиак, поверхностно-активные вещества, легкие масла (турбинное пли трансформаторное), хлористый натрий и др. [c.26]

    Вода буровая Кислота серная Сода каустическая. Уголь активирован. Нитрит натрия Хгор жидкий Сульфит натрия Всп.материалы Отходы (вычитается) [c.103]

    Н,304+Ыа,СОз= N3550, -г СО + Н О серная сода сульфат углекис- вода кислота натрия лый газ [c.271]

    Стеклянную посуду моют следующим способом. Прежде всего в отмываемый сосуд наливают горячую воду и тщательно оттирают его внутри и снаружи особыми для каждого вида посуды щгтками (ершами). Затем эту операцию повторяют, заменив воду рг створом мыла или соды, после чего хорошенько промывают сосуд,, водопроводной водой. Если таким способом, не удается хсрошо отмыть сосуд и на его внутренних стенках остаются капли, егэ моют так называемой хромовой сме.сью , т. е. смесью водного раствора бихромата калия КгСггОт с концентрированной серной кислотой. Для этого, налив хромовую смесь в очищаемый сосуд, хорошенько смачивают внутренние стенки сосуда и оставляют на некоторое время. После этого хромовую смесь следует слить обратно в содержащий ее сосуд она может употребляться мюго раз. [c.46]

    Собранные фракции — бензольная, толуольная и ксило льная — взбалтывались по 10—15 минут с 25 объемными процентами серной кислоты удельного веса 1,67, после чего фракции промывались сначала водой, затем 10%-ным раствором соды, снова водой, сушились над хлористым кальцием и перегонялись над металлическим (в виде проволоки) натрием. [c.15]

    Для удаления неуглсводородных примесей исследуемая фракция обрабатывалась серной кислотой (уд. вес 1,81) в тече [ие 15 мин, кислота бралась в количестве 8—10% к обрабатываемой фракции. Затем фракция 200—ЙБО С промывалась слабым раствором соды и дистиллированной водой, сушилась над хлористым кальцием и перегонялась в вакууме. После этого фракция дсароматизировалась при помощи хро-матсграфической адсорбции на силикагеле марки КСМ, с величиной зерен 80—180 мещ. В процессе адсорбции применялся пентан в качестве вытесняющей жидкости. [c.38]

    Исследуемая фракция с температурой кипения 200— 250°С выделялась вакуумной перегонкой сацхс1шсской нефти (скважина № 4, глубина 1400 м). Полученная фракция промывалась 75%-ным раствором серной кислоты, 10%-ным раствором соды и дистиллированной водой до нейтральной реакции. После высушивания над хлористым кальцием, фракция перегонялась над металлическим натрием и были определены ее а) удельный всс /Г = 0,8662, б) максимальная анилиновая точка — оказавшаяся равной 47, в) показатель лучепреломления я = 1,4845. [c.42]

    Исследуемые фракции 60—95° и 95—122° были выделены из скважины Л 19 норийской нефти путем дробной перегонки. Указанные фракции сперва промывались 75%-ной серной кислотой, затем водой, 10%-ным раствором соды, опять водой и после сушки над хлористым кальцием были перегнаны в присутствии металлического натрня в тех же те.мператур-ных интервалах. С целью удаления ароматических углеводородов, фракции были обработаны серной кислотой (уд. вес — 1,865), взятой в количестве 10% к объему бензина. Полнота деароматизации проверялась чувствительным реактивом на ароматические углеводороды (серная кислота-г формалин). Дсароматизированные фракции после соответствующей промывки п сушки над хлористым кальцием были перегнаны в присутствии металлического натрия. [c.71]

    Исследуемая фракция 122—150° была выделена из норийской нефти скважины № 23 путем фракционированной перегонки. Эта фракция сперва промывалась 75%-ной серной кислотой, затем Ю о-ным раствором соды и дистиллированной водой, после сушки над хлористым кальцием перегонялась в нрисутствиц металлического натрия в том же температурном интервале. [c.76]

    Объектом исследования была взята фракция 150—200° среднего образца. мирзаанской нефти. Опа была выделена из нефти дробной перегонкой. С целью удаления неуглеводородных комиоиентов, входящих во фракцию 150—200° мирзаанской нефти, указанная фракция была обработана 75%-ной серной кислотой. После обработки серной кислотой указанной концентрации, фракция была промыта дистиллированной водой, 10%-ным раствором соды, снова дистиллированной водой до нейтральной реакции, сушилась над хлористым кальцием и перегонялась в присутствш металлического натрия. [c.92]


    Исследуемая фракция подвергалась промывке 70%-ной серной кислотой, 10%-ным раствором соды и дистиллированной водой с целью удаления неуглсводородных компонентов, которые встречаются в нефтяных фракциях в виде следов и являются ингибиторами комплексообразования с мочевиной [15]. Присутствие этих иеугловодородных компонентов влияет также на точность определения группового состава, тек как коэффициенты, применяемые для этой цели, установлены для углеводородных смесей. [c.105]

    Для исследования была взята средняя проба 1 участка мир.заанекой нефти, из которой фракционной перегонкой была выделена фракция с температурой кипения 150—200°. Фраг уня подвергалась промывке 75%-ной серной кислотой, 5%-иым раствором соды и дистиллированной водой, затем сушилась над хлористым кальцием и перегонялась в присутствии металлического натрия в тех же температурных пределах. Для исследуемой фракции определялись физические свойства максимальная анилиновая точка, удельный вес и показатель лучепреломления, значення которых приведены в табл. 1. Применяемый в опытах анилин нмел температуру замерзания —6,3°. [c.109]

    Исследуемая фракция промывалась 75 %-ной серной кислотой, дистиллированной водой, 107о-ным раствором соды, снова дистиллированной водой и после высушивания хлористым кальцием перегонялась в присутствии металлического натрия в тех же условиях, что и до промывания серной кислотой. [c.120]

    Исследуемые фракции с т. кип. 150 200°С и 200—250°С выделяли фракционированием сацхенисской нефти (скважина № 4, глубина 1400 м). Фракция 150—200°С выделялась при атмосферном давлении, а фракция 200—250°С под вакуумом (10 мм). Они промывались 75%-ным раствором серной кислоты, 10%-цым раствором соды, дистиллированной водой до нейтральной реакции и после высушивания над хлористым кальцием перегонялись нал металлическим натрием в тех же пределах температур кипения. Для указанных фракций были определены удельный вес, максимальная анилиновая точка и показатель лучепреломления, значения которых даны в табл. 1. Значение предварительной промывки фракций 75%-ной серной кислотой одним из нас [8] приведено в предыдущей работе, [c.126]

    Норийский бензин из скв. № 19 подвергался многократной фракционировке при помощи дефлегматора Лебель— Генингера. Полученные фракции 60—95, 95—122, 122—150 и 150—200° взбалтывались с 75%-ной серной кислотой в течение 15 мин, затем про.мывались водой, 10%-ным раствором соды, снова водой, сушились над хлористым кальцием и перегонялись над меэаллическим натрием. [c.132]

    Дробной перегонкой супсинской нефти из скважины № 5, с удельным весом 0,905, отобрали фракции 60—95°, 95—122°, 122—150° и 150—200°, которые после многократной перегонки не давали характерную реакцию на непредельные углеводороды. Отобранные фракции встряхивались с 75%-ной серной кислотой в течение 10 минут, затем промывались водой, 10%-ным раствором соды, снова водой, сушили над хлористым кальцием и перегоняли в присутствии металлического натрия. Для вышеуказанных фракций были определены удельный вес, показатель лучепреломления и анилиновая точка. В каждом опыте применяли свежеперегнанный анилин, чистоту которого определяли по анилиновой точке индивидуального углеводорода. Затем проводили сульфирование фракции дымящей серной кислотой, содержащей 1,54% свободного серного ангидрида. Смесь бензина и серной кислоты помещалась в склянку и встряхивалась на трясучке в течение [c.137]

    Нефть мирзаанского месторождения из 9, И, 12 и 15 горизонтов подвергалась дробной перегонке. Полученные фрак-нии 60—95°, 95—122°, 122—150°, 150—200 взбалтывались с 75 7о-ной серной кислотой в течение 15 мин., затем промывались водой, 10 %-ным раствором соды, снова водой, сущились над хлористым кальцием и перегонялись в присутствии металлического натрия. Для полученных фракции были определены удельный вес, показатель лучепреломления и анилиновая точка. Для опытов применялся свсжевысушениый и свежеперегнанный анилин, чистота которого проверялась анилиновой точкой индивидуального углеводорода. Ароматические углеводороды выделялись серной кислотой, которая содержала 1,5% свободного серного ангидрида. Смесь бензниа н серной кислоты помещалась в склянку на трясучке и взбалтывалась при комнатной температуре. Полное удаление ароматических углеводородов контролировалось качественной реакцией (серная кислота + формалин). Деароматизированные фракции промывались, сушились и перегонялись в при- [c.141]

    На примере норийского бензина было показано, что высушенный над хлористым кальцием и перегнанный в присутствии металлического натрия бензин (фракция 150—200°) имел анилиновую точку 58,2° та же самая фракция норийского бензина, но предварительно промытая 73%-ной серной кислотой, 107о-ным раствором соды, водой, после сушки над хлористым кальцием и перегонки в присутствии металлического натрия имела анилиновую точку 58,9°. Чтобы не сомневаться в том, что повышение анилиновой точки в результате промывки серной кислотой указанной выи е концсктрацшг было вызвано только удалением неуглеводородных прн.мессй бензина, а не удалением ароматических углеводородов, фракция 150—200° норийского бензина обрабатывалась вторично, как указано выше, после чего, однако, анилиновая точка не изменилась. Это указывает на то, что в процессе предварительной обработки бензина прямой гонки серной кислотой указанной выше концентрации ароматические углеводороды не затрагиваются. [c.152]

    Материал для опытов был получен путем фракционированной перегонки сырой супсинской нефти собранные фракции бензольная, толуольная и ксилольная, взбалтывались по 10—15 мин. с 25 объемным процентом серной кислоты удельного веса 1,76, после чего промывались сперва водой, затем Ю-процентным раствором соды, снова водой, сушились над хлористым кальцием и перегонялись над металлическим (в виде проволоки) натрием. [c.187]

    Исследуемая фракция 60—150 была выделена фракционированием нефти Норио. Фракция 60—150 промывалась 75%-ной серной кислотой, 10%-ным раствором соды, водой и после сушки над хлористым кальцием перегонялась в присутствии металлического натрия, причем отбиралась фракция, кипящая в тех же температурных пределах. Для установления химического состава данной фракции нами был применен метод избирательного дегидрогенизационного катализа акад. Н. Д. Зелинского [15], [c.217]

    Кислота была взята в количестве 25% от объема бензина, сульфирование продолжалось 5,5 часов в механической трясучке, полнота деароматизацни контролировалась формолитовой реакцией, Деароматизированный бензин промывался 10%-ным раствором соды, водой и после сушки над хлористым кальцием и перегонки в присутствии металлического иатрия для него определялись те же константы, что и до обработки серной кислотой. [c.217]

    Мирзаанская нефть нз скиажины № 140 с удельным весом — 0,8699 несколько раз подвергалась дробной перегонке. Полученная фракция 60—150 взбалтывалась с 75%-ной серной кислотой в теченне 15 мин, после чего промывалась водой, 10%-ным раствором соды, снова водой, сушилась хлористым кальцием и перегонялась в присутствии металлического натрия. Для указанной фракции определялись удельный вес, показатель лучепреломления н максимальная анилиновая точка. Для опытов нрнменялн сухой и свежеперегнанный анилин, чистота которого проверялась посредством анилиновой точки чистого индивидуального углеводорода. Ароматические углеводороды, находящиеся в мирзаанской нефти (фр. 60—150°), удалялись действием серной кислоты удельного веса 1,84. Смесь бензина и серной кпслоты помещалась о склянке с притертой пробкой и взбалтывалась при комнатной температуре. Полное удаление ароматических углеводородов проверялось качественной реакцией (серная кислота + формалин). Деароматизированная фракция промывалась, сушилась н перегонялась в присутствии металлического натрия, после чего определялись те же константы, что и до обработки серной кислотой. По изменению максимальных анилиновых точек и с применением коэффициентов, приведенных в трудах ГрозНИИ [18] определялся групповой состав вышеуказанной фракции. [c.226]

    Регенерация реагентов. Часто в систему необходимо вводить вспомогательные исходные вещества, например, когда новый ход процесса будет более выгодным, чем при непосредственном взаимодействии основных исходных веществ, или даже единственно возможным. В этом случае нужно так организовать производственный цикл, чтобы вспомогательное исходное вещество можно было регенерировать. После регенерации это вещество возвращается в цикл, и его расход ограничивается только потерями. Такой метод широко используется в химической технологии. Отметим, что он отличается от рециркуляции реагента, олисанной на стр. 356. Обычно возвращаемое в цикл вспомогательное йсходное вещество регенерируется в результате химического превращения, а не выделяется из смеси физическими методами. Примером может служить использование концентрированной гидроокиси натрия для разложения боксита в производстве окиси алюминия методом Байера, сохранение в цикле окислов азота при башенном способе получения серной кислоты или введение в цикл аммиака при производстве соды методом Сольвея. В последнем случае процесс не может проводиться при, непосредственном взаимодействии основных исходных веществ по уравнению [c.377]

    Смесь свежих и возвратных парафинов непрерывно поступает в окислительную колонну,, где при температуре 130° С окисляется кислородом воздуха. Окисленный продукт — оксидат — охлаждается до 90° С и поступает в смеситель на водную промывку от низкомолекулярных кислот i—С4. Промытый оксидат нейтрализуется вначале 7%-ным раствором кальцинированной соды, а затем 5 %-ным раствором едкого натра. Образовавшаяся эмульсия поступает на центрифуги, где омыленная часть оксидата (мыльный раствор) отделяется от нейтральной части оксидата. Нейтральный оксидат, не содержащий жирных нислот, возвращается в окислительную колонну. Мыльный раствор направляется в термический узел для облагораживания кислот и далее в отделитель, где происходит отделение воды и неомыляемых от расплавленного мыла. Расплавленное мыло поступает на расклеивание, которое производится раствором сульфата натрия. Полученный 20%-ный раствор мыла обрабатывается 96%-ной серной кислотой, в результате чего мыльный клей разлагается с образованием жирных кислот и сульфата натрия. Полученная при разложении смесь [c.158]

    КОЛОННЫ с активированным углем 2 — подогреватель метана 3 — колонны с сслсй и известью 4 — газодувка для транспортирования сгоревших газов через подогреватель и через колонны с содой и известью 5 — перегреватель испаренного аммиака в — испаритель для аммиака 7 — трубопровод для регулирования состава смеси аммиак — метан 8 — подогреватель воздуха 9 — печь 0 — холодильник для реакционных газов П — экономайзер /2 — котел-рекуператор 3, 14 — промывные колонны 15 — смеситель серной кислоты 16, 17 — колонны для десорбции цианистоводородной кислоты 18, 19 — промежуточные емкости 20, 21 — фильтры для воды и серноП кислоты. [c.225]

    Широкое использование хлора в различных отраслях народного хозяйства, а также масштабы его производства и потребления позволяют отнести хлор, наряду с серной кислотой, амм[1аком и содой, к числу важнейших продуктов, выпускаемых химической гцюы ы тленностью. [c.359]

    Согласно Зибенбеку, эмульсии щелоков, остающихся после промывки парафина серной кислотой и каустической содой, сопровождающейся перемешиванием сжатым воздухом, содержали 10% жирных кислот. [c.82]

    Шульц показал что 199 г дестиллата из нефтей Галиции до очистки требуют для полной нейтрализации 63 мг соды. После предварительной очистки 3% HiS04 и промывки водой, на нейтрализацию пошло всего 29 мг соды. Отсюда выяснилось, что кислоты, соответствующие последнему количеству щелочи, являются продуктами окисления. Пюхала также рассматрива т кислоты из дестил-лата, получаемого после обработки серной кислотой, как продукты окисления. [c.155]

    Как известно, наибольший расход каустической соды приходится на очистку сырья для процесса алкилирования (бутан-бутиленовой и пропан-пропиленовой фракций), где щёлочь расходуется на удаление меркаптановых соединений. В среднем для очистки одной тонны бутан-бутиленовой фракции расходуется 1,06 кг щёлочи. Однако и это не обеспечивает полного удаления сернистых соединений. Обычно после очистки остаётся до 0,0155 % мае. меркаптановой серы. Эти меркаптаны обуславливают повышенный расход серной кислоты в процессе алкилирования. При использовании процесса демеркаптанизации для очистки бутан-бутиленовой фракции за счёт регенерации расход щёлочи снижается до 0,06 кг/т сырья, а содержание меркаптанов уменьшается до 0,0005 % мае. Это даст следующую годовую экономию реагентов для типовой алкилирующей установки производительностью 82 тыс. т/год  [c.41]

    Ароматические углеводороды, полученные по методу Эделеану, часто дополнительно рафинируются серной кислотой и содой с целью удаления из них ненасыщенных соединений (олефинов и диолефи-иов). Таким образом получаются ароматические соединения высокой чистоты [83]. Из ароматических углеводородов, полученных путем каталитического крекинга (пиролиза) нефти, выделяются бензол, толуол и ксилолы 75, 92]. [c.402]

    Экстракция урана при переработке руд и другого сырья. Производство чистого металлического урана из урановой руды в первой своей фазе заключается в обработке руды азотной кислотой, серной кислотой, содой ЫЗаСОз или кар- [c.425]


Смотреть страницы где упоминается термин Серная в соде: [c.271]    [c.249]    [c.76]    [c.137]    [c.369]    [c.291]    [c.210]    [c.387]    [c.345]    [c.243]   
Химико-технические методы исследования Том 2 (0) -- [ c.327 ]




ПОИСК





Смотрите так же термины и статьи:

Сода сода



© 2025 chem21.info Реклама на сайте