Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись в серной кислоте

    Тиофен, который в последние годы производится в промышленных масштабах, также легко может алкилироваться каталитическим путем. Алкилирование тиофена бутенами или пентенами, а так>ке исключительно пригодным для этого циклогексепом может осуществляться пропусканием тиофена и олефинов или циклоолефинов над катализатором кремневая кислота — окись алюминия при 200° или над твердой фосфорной кислотой, как было выше описано для получения кумола, или также с серной кислотой. [c.231]


    Рунге с сотрудниками [78, 79] провели в 1952—1953 гг. обширные исследования по определению наиболее подходящих катализаторов для гидратации пропилена. С этой целью были изучены кислые катализаторы, такие, как серная кислота, нафталинсульфокислота, фосфорная кислота, кислые фосфаты, окись вольфрама без промотора и носителя, а также на различных носителях, например на активированном кислотой монтмориллоните. Показано, что серная кислота не подходит из-за нестойкости, а фосфатные катализаторы отличаются незначительной активностью. Фосфорные кислоты на носителях проявляют при средней крепости кислоты максимальную каталитическую активность, причем наилучшим носителем является крупнопористый силикагель. Выход в единицу времени на единицу объема составил 0,52 кг изопропилового спирта на 100 мл [c.62]

    Продукты С токсическими свойствами а) сильнодействующие ядовитые вещества (СДЯВ) аммиак жидкий и газообразный, аммиачная вода (25%-ная), нит-трил акриловой кислоты, окись углерода, сероводород, сероуглерод, тетраэтилсвинец, хлор жидкий и газообразный, хлорметан, дихлорэтан, синильная кислота, нитро-и аминосоеди нения ароматического ряда б) дымящие кислоты олеум, серная кислота конц., соляная кислота конц., азотная кислота конц., плавиковая кислота в) прочие продукты с токсическими свойствами ацетальдегид, бензол, метиловый спирт, окись этилена, хлорбензол, фенол, крезол, толуол, пятисернистый фосфор, окись цинка, диэтиламин, диэтилбензол, пиридин, сульфонол,этилбензол, этилтри-хлорсилан, щелочные растворы концентрацией более 10% [c.542]

    Изомеризация предельных углеводородов протекает в присутствии определенных кислот или катализаторов, действующих как кислоты. Для изучения изомеризации часто применяют такие катализаторы, как хлористый и бромистый алюминий, серная кислота, этилсульфокислота, фтор- и хлорсульфорювые кислоты, а также гидрирующие катализаторы, как платина — окись алюминия — связанный галоид и никель, платина и т. д., нанесенные па алюмосиликат. С последними катализаторами изомеризацию ведут в присутствии молекулярного водорода. [c.52]

    В. Мейер и Вурстер [55] нашли, что при действии минеральных кислот на первичные нитропарафины образуются карбоновые кислоты и гидро-ксиламин. Из нитроэтана под действием серной кислоты получаются уксусная кислота и гидроксиламинсульфат [56], из нитрометана, как показал Р. Прейбиш, таким же образом получаются окись углерода и гидроксиламинсульфат [57]. [c.276]


    Кальция окись. Серная кислота, ос. ч., уд. в. 1,84. [c.12]

    Функция кислотности Гаммета На для ЗЮг составляет от +4 до -+-6,8, окись алюминия также имеет очень слабые кислотные свойства (Яо -[-4), а алюмосиликаты имеют Яо —8,2, их кислотность близка к кислотности серной кислоты, нанесенной на силикагель. Сила кислотных центров на поверхности алюмосиликатов различна, часть центров обладает очень высокой кислотностью (Яо —12,5). С изменением соотнощения ЗЮа А Оз в алюмосиликатах изменяется кислотность и по Бренстеду, и по Льюису. Кислотность по Льюису максимальна для чистой окиси алюминия и с увеличением содержания 5102 уменьшается, для чистой двуокиси кремния они приблизительно равна нулю. Кислотность по Бренстеду в расчете на единицу поверхности алюмосиликата максимальна при содержании 30—40% АЬОз и 70—60 /о 5Юг. Аморфные синтетические алюмосиликаты такогв" состава имеют максимальную активность при каталитическом крекинге (при одинаковой технологии приготовления). Из нижеприведенных данных видно, что при нагревании алюмосиликатов протонная кислотность [c.210]

    Износоустойчивый окисножелезный катализатор [13, 27, 28, 38] может применяться в комбинированном контактно-башенном способе производства серной кислоты, для которого достаточно окислить около 30 объемн. % ЗОз перед поступлением газа в нитрозную башенную систему с целью получения купоросного масла и разгрузки питрозной системы. При переработке газов от сжигания колчедана ванадиевый катализатор отравляется мышьяком, в результате чего его активность снижается примерно в 2 раза. Железный катализатор мышьяком не отравляется, однако он все же менее активен, чем отравленный ванадиевый катализатор. Окись железа в виде крупных кусков огарка, получаемого при обжиге колчедана, применялась ранее в промышленных аппаратах для окисления сернистого газа. Активность ее достаточно исследована [2, 39—41]. Во взвешенном слое огарок в качестве катализатора не пригоден, так как его истираемость составляет 95% в месяц. Исследованиями [28, 38] было установлено, что можно резко повысить механическую прочность колчеданного огарка за счет введения цементирующих добавок (жидкое натриевое стекло или фосфорная кислота). При этом каталитическая активность огарка практически не снижается. Истираемость такого катализатора составляет 2—3% в месяц. В качестве порообразующего компонента в смесь вводится технический глицерин или другая органическая примесь, выгорающая при прокаливании катализатора. [c.148]

    В процессе Мет-х катализатор крекинга реактивируют с помощью ионообменных смол. При контакте с ионообменной смолой металлические примеси хорошо удаляются с катализатора. Влияние различных параметров очистки на активность катализатора и его коксообразующий фактор изучалось в работе [364]. Опыты проводили на алюмосиликатном катализаторе следующего химического состава (в вес. %) окись алюминия 14,2 натрий 0,31 железо 0,18 никель 0,011 ванадий 0,021. В качестве ионообменной смолы применяли пермутит, пропущенный через сито 30 меш. Из сухого загрязненного катализатора, смолы и воды приготовляли суспензию (0,5 г катализатора на 1 мл смолы) количество смягченной воды брали из расчета 0,55 г катализатора на 1 мл. воды. Ионообменную смолу обрабатывали 10%-ной серной кислотой (из расчета 544 кг на 1 м смолы) с последующей промывкой [c.225]

    Марганца окись. Серная кислота. [c.18]

    Из всех выбросов химических предприятий в атмосферу наибольший вред приносят сернистый газ, окислы азота, окись углерода, нефтяные газы, а также различные пыли. Нефтедобыча и нефтехимия дают около 15,5% всех выбросов в атмосферу. Между тем очистка отходящих газов на химических заводах не только возможна, но и экономически выгодна, так как нередко отходы удается переработать в продукт, нужный народному хозяйству например ЗОз перерабатывается в серную кислоту. [c.281]

    Окись этилена можно выделить из газообразных продуктов реакции сжижением (и ректификацией) при низких температурах или превращением ее в гликоль разбавленными растворами серной кислоты. [c.168]

    Присутствие следов серной кислоты или ее кислых эфиров в отечественных бензинах практически исключено, так как сернокислотная очистка бензиновых дистиллятов на наших заводах не применяется. Среди водорастворимых кислот могут ока- [c.288]

    Пытаясь рационализировать процесс синтеза этилового алкоголя, применяя те же кислотные скрубберы, мы изучали условия протекания реакции между этиленом и серной кислотой, не прерывая процесс и основываясь на принципе работы батареи реакционных аппаратов [41. Ока алось, что, используя любые варианты работы скрубберов, но не изменяя их конструкции, нельзя достигнуть одновременного снижения расхода серной кислоты и увеличения коэффициента использования этилена в газе (табл. 1). Из данных табл. 1 видно, что с понижением расхода кислоты на единицу спирта выход последнего падает. Эта закономерность подтверждает абсолютную неприменимость скрубберов в качестве реакционных аппаратов в технологическом процессе синтеза. [c.26]


    Определяя окись углерода в аппаратах ВТИ-1, ВТИ-2 и другие, переводят пробу газа перед окончательным замером объема в поглотитель с 10%-ной серной кислотой для поглощения паров аммиака. Следует помнить, что [c.827]

    Сероводород перерабатывается с получением серной кислоты или элементарной серы. Газовая смесь после алкацидной промывки еще содержит органическую серу в виде сероокиси углерода и меркаптанов. Эту газовую смесь пропускают при температуре 280° над окисножелез-ным контактом, активированным окисью хрома (90% РегОз и 5—7% СггОз), причем органическая сера превращается в сероводород. Серо-окись углерода взаимодействует с содержащимся в газе водяным паром, образуя двуокись углерода и сероводород. Эти гааы без выделения вновь образовавщегося сероводорода смещиваются с богатыми газами нарофазной гидрогенизации (см. ниже) в сборной емкости и в дальнейшем перерабатываются вместе с ними. [c.38]

    Действие серной кислоты на металлический кадмий или его окись [c.179]

    Действие разбавленной серной кислоты на отходы цветной металлургии. содержащие окись цинка и металлический цинк [c.189]

    Отделение олефинов от нефтепроду]<тов можно проводить с помощью 80 "о-он серной кислоты. В настоящее время разработапь. методы анализа нефтепродуктов, содержащих олефины, хромато графическим путем. В газовый хроматограф монтируется реак1 о , содержащий адсорбент с нанесенной па его поверхность 80%-ок серной кислотой. В хроматограф вводится 2 образца фракции нефтепродукта, один из них поступает непосредственно в хроматограф, другой проходит через реактор с серной кислотой. Сравнение хроматограмм позволяет определить на хроматограмме фракции нефтепродукта пи1- и, соответствующие этиленовым углеводородам., Цля идентификации этиленовых углеводородов наряду со спектраль ными методами нередко используют химические методы. Так, длр установления положения двойной связи в молекуле олефина применяют озонирование и окисление. [c.84]

    Предприятия химической промышленности выбрасывают в атмосферу в значительных количествах вредные газы и пыли. К их числу относятся сернистый ангидрид, окислы азота, туман серной кислоты, фтор, хлор, сероводород, окись углерода, пыли минеральных удобрений—фосфоритная и суперфосфатная, сажа и многие другие вещества. Большинство отходящих газов и пылей приносит ущерб народному хозяйству. Некоторые из них агрессивно действуют на строительные конструкции, разрушая бетон, железные крыши, фермы мостов, мачты линий электропередач. Пыль и сажа, осаж-даясь на изоляторах, могут вызвать аварии на высоковольтных линиях, попадаЯТ машины и механизмы, они ускоряют изяоС трущихся частей, понижают прозрач- [c.255]

    На объем выпуска продукции большое влияние ока.чывает эффективность использования сырья, материалов и полуфабрикатов. Анализ нспользовапия материально-сырьевых ресурсов проводится как в целом на выработанную продукцию, так и по отдельным ее видам, В процессе такого анализа необходимо иметь в виду, что затраты на сырье, материалы и полуфабрикаты непосредственно связаны с общим объемом выпускаемой продукции, ее ассортиментом и расходными нормами па едини-ду продукции, соблюдением расчетных параметров ведения технологического процесса. При анализе эффективности использо-иания сырья следует определить влняние каждого из этих факторов. На примере расхода серы для производства серной кислоты установим влияние эффективного расходования серы на ее экономик) и снижение себестоимости продукции (табл. 7.3), %. [c.142]

    Другая возможность превращения продуктов нитрования высокомолекулярных углеводородов в кетоны состоит в обработке концентрированной серной кислотой псевдонитролов (нитронитрозосоединений) которые расщепляются на кетон и окись азота. Так как продукты нитрования высокомолекулярных парафинов состоят в значительной степени из вторичных нитросоединений, то из них также можно получить этим путем кетоны с хорошими выходами, например  [c.348]

    Рассмотр1Ш в качестве примера электрорафиинрование меди. Основным компонентом раствора служит сульфат меди — наиб )-лее распрострапеппая и дешевая соль этого металла. Но раствор Си 0 обладает низкой электропроводностью. Для ее увеличения в электролит добавляют серную кислоту. Кроме того, в раствор вводят небольшие количества добаг.ок, способствующих получению компактного осадка металла. [c.300]

    Метионовая кислота получается в небольших количествах при помощи ряда реакций, ведущихся с применением серного ангидрида или дымящей серной кислоты. Она выделена из реакционной смеси, полученной сульфированием этилового эфира [432] диэтилсульфата [433], ацетонитрила, ацетамида, сульфоуксусной [434], уксусной [435] и молочной кислот [436]. Ацетилен легко растворяется в 50%-ной дымящей серной кислоте [437], образуя в качестве основного продукта формилметионовую кислоту, небольшая часть которой разлагается на окись углерода и метионовую кислоту  [c.175]

    Окись меди, подобно серной кислоте, имеет также тенденцию к превращенгш меркаптанов В дисульфиды. При перегонке "нефти в присутствии окиси меди эти последние впрочем могут быть превращены в сернистые алкилы и сернистую медь.  [c.169]

    При производстве серной кислоты нитрозным методом очищенный печной газ обрабатывается нитрозой — серной кислотой, содержащей растворенные окислы азота. Двуокись серы печного газа поглощается нитрозой и окисляется высшими окислами азота с образованием серной кислоты. Выделившаяся окись азота окисляется кислородом воздуха и возвращается в производственный цикл. Частичные потерн окислов азота с выхлопными газами и выводимой продукционной кислотой восполняются добавлением в нитрозпую систему азотной кислоты. [c.123]

    Фирма Mitsubishi (Япония) разработала способ получения толуилендиизоцианата, в котором в качестве исходного сырья используются толуол, азотная и серная кислоты, водород, хлор и окись углерода. Процесс впервые реализован в 1961 г. на опытно-промышленной установке мощностью 600 т/год. В 1971 г. производительность установки была увеличена до 10 тыс. т/год. [c.303]

    Содержание азота определяют методом Дюма или Кьельдаля. Метод Дюма осиоваи иа окислении нефтепродукта твердым окислителем [окись меди(П)] в токе углекислого газа. Образовавшиеся в процессе окисления окислы азота Еосстаиавливают медью до азота, который улавливают после поглощения углекислого газа, и по его объему определяют количество азота в нефтепродукте. По Кьельдалю, нефтепродукт окисляют концентрированной серной кислотой. Из образующегося сульфата аммония азот выделяют при обработке щелочью в виде аммиака, который улавливают титрованным раствором кислоты. [c.59]

    Окисление часто используется как метод изучения свойств и молекулярного строения различных по происхождению твердых топлив. Для этой цели применяются различные окислители — кислород, озон, НЫОз, КМПО4, Н2О2, хромовая и серная кислоты и др. При окислении твердых топлив получаются разнообразные продукты вода, окись и двуокись углерода., низкомолекулярные кислоты (уксусная, щавелевая, пропионовая, масляная), различные фталевые и бензолкарбоновые кислоты и др. Каменные угли дают темно-окрашенные кислоты. В их состав наряду с гуминовыми входят алифатические дикарбоновые, различные бензолкарбоновые и многоядерные ароматические кислоты. [c.166]

    Известен целый ряд примеров того, что серная кислота или олеум действуют на производные антрахинона окисляющим обра-зо.у1, при этом сульфированпе может иметь, но может и не иметь места. Такпм образом получаются оке и антрахиноне ульфо кис лоты, представляющие известную ценность в качестве красителей [7846, 796]. [c.120]


Смотреть страницы где упоминается термин Окись в серной кислоте: [c.140]    [c.134]    [c.140]    [c.78]    [c.443]    [c.323]    [c.113]    [c.30]    [c.121]    [c.326]    [c.403]    [c.380]    [c.162]    [c.347]    [c.22]    [c.304]    [c.134]    [c.300]    [c.423]   
Справочник сернокислотчика 1952 (1952) -- [ c.373 ]




ПОИСК





Смотрите так же термины и статьи:

Бария окись разложение серной кислотой

Ванадий окись его как катализатор при абсорбции этилена в серной кислоте

Изобутилен, окись, хлор метилпропанол из нее серной кислотой

Изобутилен, окись, хлор метилпропанол из нее скорость абсорбции серной кислото

Калий иодистый, коэффициент активности влияние гидрата окиси калия и серной кислоты

Натрий, гидрат окиси, относительное парциальное молярное теплосодержани активности гидрата окиси натрия и серной кислоты

Окись азота в серной кислоте

Окись серы S03 и серная кислота

Растворение окиси меди в серной кислоте

Серная кислота окиси углерода

Серная кислота растворимость окиси азота

Этилен окись серной кислотой



© 2025 chem21.info Реклама на сайте