Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Производство нитрозной башенной

Рис. 65. Схема производства серной кислоты нитрозным (башенным) способом / и II — продукционные башни с насадкой III—окислительный объем, IV и V—абсорбционные башни с насадкой /—холодильник 2 —сборник 3 — насос Рис. 65. <a href="/info/682102">Схема производства серной кислоты</a> нитрозным (башенным) способом / и II — <a href="/info/639243">продукционные башни</a> с насадкой III—окислительный объем, IV и V—<a href="/info/409943">абсорбционные башни</a> с насадкой /—холодильник 2 —сборник 3 — насос

    НИТРОЗНЫЙ (БАШЕННЫЙ) СПОСОБ ПРОИЗВОДСТВА И КОНЦЕНТРИРОВАНИЕ СЕРНОЙ КИСЛОТЫ [c.106]

    По сравнению с другими оросителями разбрызгивающие звездочки изучены наиболее полно. Такие оросители являются основными при нитрозном (башенном) способе производства серной кислоты. [c.107]

    В настоящее время серная кислота производится двумя способами нитрозным, существующим более 200 лет, и контактным, освоенным в промышленности в конце XIX и начале XX в. Контактный способ вытесняет нитрозный (башенный). Первой стадией сернокислотного производства по любому методу является получение диоксида серы при сжигании сернистого сырья. После очистки диоксида серы (особенно в контактном методе) ее окисляют до триоксида серы, который соединяется с водой с получением серной кислоты. Окисление ЗОг в 50з в обычных условиях протекает крайне медленно. Для ускорения процесса применяют катализаторы. [c.115]

    НИТРОЗНЫЙ (БАШЕННЫЙ) СПОСОБ ПРОИЗВОДСТВА СЕРНОЙ КИСЛОТЫ [c.56]

    Серную кислоту получают в нашей стране двумя способами нитрозным (башенным) и контактным. Преимущественное развитие получил у нас контактный способ, в усовершенствование которого большой вклад внесли ученые и работники сернокислотных заводов и проектных организаций. Одновременно проводятся научные исследования в области дальнейшего совершенствования нитрозного способа. В последнее время успешно испытана контактно-башенная система. Ведутся исследования по использованию в производстве серной кислоты кислорода и обогащенного кислородом воздуха, получению и применению при нитрозном й контактном способах концентрированного по содержанию сернистого ангидрида газа, разрабатываются новые конструкционные материалы для изготовления аппаратуры в производстве серной кислоты, стойкие при работе в агрессивных средах и высокой температуре. [c.4]

    В гетерогенных процессах весьма часто применяются комбинированные схемы, в которых одна из реагирующих фаз проходит последовательно ряд аппаратов и оставшаяся часть ее выбрасывается, а вторая фаза циркулирует через некоторые аппараты схемы. Типичным примером является схема производства серной кислоты нитрозным способом (рис. 65), которая является открытой цепью башен для газа и циркуляционной по жидкости (нитрозе). Последняя совершает круговые циклы от первой до последней башни. Во многих производствах применяются схемы с циркулирующими растворителями газовых и твердых компонентов (см. рис. 28, 136). [c.95]


    На рис. 127 изображена схема прямого синтеза концентрированной азотной кислоты из жидких окислов азота абсорбционным методом. Нитрозные газы, получаемые так же, как при производстве разбавленной азотной кислоты под атмосферным давлением (стр. 277), пройдя через котел-утилизатор, поступают в скоростной холодильник 1, где охлаждаются до 40—45 °С. При этом конденсируется около 75% водяных паров, содержащихся в газе, и происходит частичное окисление N0 в N02. Образующийся водный конденсат, содержащий 2—3% ННОз, используется в производстве разбавленной ННОз для орошения абсорбционных башен. Из скоростного холодильника нитрозные газы поступают в обычный газовый холодильник 2, где происходит дальнейшая конденсация паров воды, оставшихся в газе, а также частичное окисление НО в НО2. Образующаяся при этом 30—35%-иая азотная кислота направляется в колонну 9, где используется для промывки выхлопных газов. [c.300]

    При нитрозном методе производства продуктом является башенная кислота (концентрацией около 75%). [c.132]

    Как известно, процесс получения серной кислоты камерным (или башенным) способом носит название нитрозного. Серная кислота, получаемая этим способом, является менее концентрированной и чистой, чем получаемая контактным способом, возникшим позднее. Поэтому впоследствии этот способ стал вытесняться новым, контактным. В настоящее время нитрозный процесс получения серной кислоты является умирающим процессом. Хотя заводы, работающие по этому способу, все еще снабжают серной кислотой те отрасли, где не нужна особенно концентрированная и чистая кислота (например, производство минеральных удобрений), все же гораздо выгоднее строить новые заводы, работающие по контактному методу и дающие сер ную кислоту, пригодную для различных целей (органический синтез, производство взрывчатых веществ и т. д.). [c.125]

    Для защиты от коррозии наружной поверхности газоходов их окрашивают специальными химически стойкими покрытиями. Так, газоход от сухих электрофильтров до первой промывной башни защищают снаружи черным печным лаком, а газоходы промывных отделений контактных заводов и башенных отделений производства серной кислоты нитрозным способом—перхлорвиниловым лаком. [c.204]

    Для выделения тумана серной кислоты из отходящих газов в конце системы установлен электрофильтр. В отличие от контактного метода в производстве серной кислоты по нитрозному методу сернистый газ предварительно освобождается только от механических примесей (пыли). Очистки газа от мышьяка, селена и других примесей не требуется, так как они нб влияют на течение процесса. Очищенный от пыли сернистый газ (концентрация SO2 —9%) пост шает в башенную систему при 360—450 °С непосредственно из огарковых (сухих) электрофильтров и проходит через все башни сернокислотной системы. [c.132]

    Выделение селена в производстве серной кислоты нитрозным методом производится по схеме, изображенной на рис. У-12. Продукционная башенная кислота поступает в приемный бак 2, откуда перекачивается в насадочную башню-реактор 1, которая включена параллельно денитрационной и концентрационной башням. Через башню I проходит обжиговый газ, орошающая насадку кислота насыщается сернистым ангидридом. По выходе из [c.126]

    Из табл. 5 следует, что при контактном процессе получается кислота более концентрированная и чистая, но более дорогая, чем при нит-розном способе. Такая контактная кислота используется при получении химических волокон, пластических масс, красителей, этилового-спирта и др. Башенная кислота, получаемая при нитрозном способе производства, применяется главным образом там, где не требуется кислота высокой концентрации, например при производстве удобрений. [c.83]

    В последние годы для орошения башен в производстве серной кислоты нитрозным методом все шире применяются механические форсунки. Их достоинствами являются простота устройства, равномерность распределения кислоты и меньшая вероятность-засорения. [c.343]

    Основной процесс окисления сернистого ангидрида в производстве серной кислоты нитрозным методом осложнен многими одновременно протекающими химическими процессами. Эти процессы взаимно связаны между собой, поэтому каждый из них нельзя рассматривать отдельно от других. На ход этих процессов весьма существенное влияние оказывают количество башен, количество кислоты, орошающей эти башни, интенсивность процессов тепло- и массопередачи в газах и жидкости и др. Определенное наиболее выгодное согласование химических и физических факторов протекающих процессов и приводит к установлению оптимального технологического режима. [c.352]

    Процесс производства серной кислоты заключается в сжигании содержащего серу сырья и получении двуокиси серы, которая затем окисляется и превращается в Н2504 с помощью окислов азота (нитрозный метод в виде камерного или башенного способов) или твердых катализаторов (контактный метод). [c.116]


    Износоустойчивый окисножелезный катализатор [13, 27, 28, 38] может применяться в комбинированном контактно-башенном способе производства серной кислоты, для которого достаточно окислить около 30 объемн. % ЗОз перед поступлением газа в нитрозную башенную систему с целью получения купоросного масла и разгрузки питрозной системы. При переработке газов от сжигания колчедана ванадиевый катализатор отравляется мышьяком, в результате чего его активность снижается примерно в 2 раза. Железный катализатор мышьяком не отравляется, однако он все же менее активен, чем отравленный ванадиевый катализатор. Окись железа в виде крупных кусков огарка, получаемого при обжиге колчедана, применялась ранее в промышленных аппаратах для окисления сернистого газа. Активность ее достаточно исследована [2, 39—41]. Во взвешенном слое огарок в качестве катализатора не пригоден, так как его истираемость составляет 95% в месяц. Исследованиями [28, 38] было установлено, что можно резко повысить механическую прочность колчеданного огарка за счет введения цементирующих добавок (жидкое натриевое стекло или фосфорная кислота). При этом каталитическая активность огарка практически не снижается. Истираемость такого катализатора составляет 2—3% в месяц. В качестве порообразующего компонента в смесь вводится технический глицерин или другая органическая примесь, выгорающая при прокаливании катализатора. [c.148]

    Нитрозным (башенным, камерным) способом (рис. 75) осуществляют приблизи ельпо 20 % мирового производства HjS04. Способ известен примерно в 1750 г. Продуктом является менее концентрированная HiSO , чем в контактном способе. [c.372]

    На некоторых заводах качеству серной кислоты не уделяют достаточного внимания, что приводит к значительным потерям ценного сырья. Дело в том, что в производстве сульфата аммония в основном применяется серная кислота, получаемая нитрозным (башенным) способом. Эта кислота содержит некоторое количество окислов азота, связанных с ней в виде нитрозы (НЗОдК). Под влиянием повышенной температуры нитроза в сатураторе разлагается на серную кислоту и трехокись азота по реакции [c.144]

    Промышлеппое производство серной кислоты осугцествляется двумя способами контактным и нитрозным. При контактном способе сернистый ангидрид, образующийся при ся игании серусодержащего сырья, окисляют до серного ангидрида кислородом воздуха с применением катализатора при нитрозпом способе передатчиком кислорода служит нитроза (раствор окислов азота в серной кислоте). Ранее существовало два нитрозных способа камерный и бапшнный. Камерным способом в настоящее время серную кислоту не получают, производство продукта башенным методом постоянно сокращается. [c.53]

    К2 02 + Н,0 = Н2504 В обычных условиях реакция окисления сернистого ангидрида протекает очень медленно, поэтому в промышленности для ускорения процесса проводят эту реакцию на катализаторе или применяют в качестве передатчика кислорода нитрозу. В зависимости от этого различают контактный и нитрозный (башенный) способы производства серной кислоты. [c.4]

    Износоустойчивый окисножелезный катализатор [84, 90, 183] может применяться в комбинированном контактно-башенном способе производства серной кислоты, для которого достаточно окислить около 30% (объемн.) SOj перед поступлением газа в нитрозную башенную систему с целью получения купоросного масла и разгрузки нитрозной системы. [c.125]

    При переработке нитрозных газов в системах, работающих под атмосферным давлением, с использованием воздушно-аммиачной смеси (10—127о ЫНз) при обычной температуре абсорбции N02 можно получить только разбавленную 47—50%-иую азотную кислоту. Снижением температуры абсорбции можно сместить равновесие в сторону образования более концентрированной азотной кислоты, однако это дает незначительный результат вследствие уменьшения скорости реакции взаимодействия диоксида азота с водой. Повышение давления до 1 МПа позволяет получать СО—62%-ную азотную кислоту. При переработке аммиачно-воздушной смеси в азотную кислоту под атмосферным давлением наиболее медленной стадией процесса является окисление оксида а. юта до диоксида. Поэтому требуются большие объемы окислительно-абсорбционных башен. Применение в производстве азотной кислоты воздуха, обогащенного кислородом, или чистого кислорода позволяет получать нитрозные газы с повышенным содержанием оксида азота и увеличить скорость реакции окисления N0 в N02. [c.105]

    Нитрат натрия. Производство нитрата натрия с использованием колоссальных залежей чилийской селитры уже описано в главе I-Чилийские залежи до сих пор являются основным источником "ЭТОГО вещества, но небольшие, по сравнению с чилийской выработкой, количества получают теперь синтетическим путем на многих установках по производству связанного азота. В Норвегии остаточные окислы азота, полученные по дуговому способу и не поглощенные в кислотных башнях, пропускаются через щелочные башни, где большая часть их поглощается концентрированным раствором углекислого натрия. Раствор, полученный в этих башнях, имеет примерно следующий состав 1,5% КЯгСОз, 1,5% КаНСО,, 30,5% КаНОг и 3,5% Ка1ЧОд. Обычно этот раствор концентрируют выпаркой, а нитрит натрия выделяют кристаллизацией для производства же нитрата натрия раствор обрабатывают азотной кислотой из кислотных башен Таким путем карбонаты и нитрит превращаются в нитрат натрия, а выделяющиеся нитрозные газы возвращаются на абсорбцию в кислотные башни. Затем раствор нитрата натрия концентрируется для получения кристаллического продукта. [c.346]

    Оксиды азота N0 +N025 f N20з поглощаются серной кислотой в последующих трех-четырех башнях по реакции, обратной уравнению (а). Для этого в башни подают охлажденную серную кислоту с малым содержанием нитрозы, вытекающую из первых башен. При абсорбции оксидов получается нитрозилсерная кислота. Таким образом, оксиды азота совершают кругооборот и теоретически не должны расходоваться. На практике же из-за неполноты абсорбции имеются потери оксидов азота. Расход оксидов азота в пересчете на НЫОз составляет 10—20 кг на тонну моногидрата Н25О4. Нитрозным способом получают загрязненную примесями и разбавленную 75—77%-ную серную кислоту, которая используется в основном для производства минеральных удобрений. [c.116]

    Советские башенные установки благодаря работам Б. Д. Мельника, С. Д. Ступникова, К- М. Малина и сотрудников НИУИФа достигли наибольшей интенсивности во всем мире. Вследствие умелого применения концентрированного сернистого газа, крепкой нитрозы, повышенных температур в продукционных башнях и пониженных в абсорбционных интенсивность работы башен составляет 200 и даже 250 кг H2SO4 с 1 м объема башен в сутки, что в несколько раз превышает среднюю интенсивность заграничных нитрозных установок. Однако в виду усовершенствования контактного способа производства себестоимость более чистой и концентрированной контактной серной кислоты и в СССР лишь незначительно выше, чем башенной. Поэтому в СССР прекращено строительство башенных цехов, а строятся лишь контактные. В 1965 г. до 72% всей кислоты будет производиться контактным способом. [c.212]

    Природные кис-лотоупоры (горные породы) Андезит и бештаунит 800 Абсорбционные башни в производстве соляной и азотной кислот, аппаратура для получения купоросного масла и корпуса электрофильтров в установках для концентрирования серной кислоты Футеровочный материал для абсорбционных, сушильных и поглотительных башен при нитрозном и контактном способах получения серной кислоты и для аппаратов, подверженных воздействию агрессивных кислот и газов при высоких температурах [c.64]

    Важнейшим нанравление м научно-исследовательских работ и в этот период было изыскание новых видов сырья для химической промышленпости, глубокое изучение уже открытых и поиски новых месторождений ископаемых. Особенно большое внимание уделялось изучению хибинских апатитов, иитенсификацпн башенного (нитрозного) процесса получения серной кислоты, изысканию методов получения высококонцентрированных минеральных удобрений и комплексной переработке отходов медеплавильного производства. [c.140]

    Большой интерес представляют работы проведенные Е. И. Литвшювой и Г. С. Григорьевым, по изучению коррозии стали в условиях башенного производства серной кислоты. В результате опытов по изучению коррозии стали в нитрозах оказалось, что при одинаковом содержании Н2504 в нитрозе (74—75%) с повышением нитрозности кислоты от 1 до 6% (в пересчете иа НМОз) коррозия усиливается. Это объясняется тем, что, во-первых, образцы стали перед опытами не были запассивированы в нитрозе при более высокой температуре во-вторых, при одном и том же содержании НаЗО, в нитрозе повышение нитрозности ведет к расслаблению кислоты за счет убыли Н2504 и выделения воды по реакции  [c.36]

    При малонитрозном (с малой интенсивностью) режиме работы свинец является лучшим коррозиоиноустойчивым материалом для сооружения башен, предназначенных для производства серной кислоты нитрозным способом. Однако в современных высокоинтенсивных системах, работающих с высокой нитрозностью, свинцовая обечайка башен и днища быстро выходили из строя. Поэтому пришлось отказаться от свинца, и в настоящее время кожухи башен выполняются из углеродистой стали марки Ст. 3 до высоты колосниковой решетки, далее—из стали марки Ст. О по всей высоте башни. [c.39]

    Реально возможной в настоящее время является лишь очистка газов от брызг и тумана серной кислоты с помощью мокрых электрофильтров. Что же касается окислов азота, то наиболее надежным методом их выделения из выхлопных газов сейчас считается способ поглощения купоросным маслом. Одн ако этот метод может быть использован только при работе башенной системы с выпуском куноросного масла для орошения им последней башни или в том случае, когда это купоросное масло можно получить из контактного цеха. Поэтому для улавливания брызг и тумана серной кислоты принято устанавливать в конце системы мокрые электрофильтры, а для выброса нитрозных газов в верхние слои атмосферы—высокие трубы. Конечно, при этом способе обезвреживания газов окислы азота безвозвратно теряются для производства и, кроме того, их вредность не устраняется, а лишь ослабляется. Несмотря на недостатки указанного метода, он представляет сейчас значительный интерес для промышленности. [c.76]

    Способы защиты от коррозии оборудования при нитрозном и контактном способах производства серной кислоты существенно различаются. Исследованиями НИУИФ установлено, например, что полиизобутилен неустойчив в кислоте и газе, содержащих окислы азота. Это заставило подбирать химически стойкие материалы, пригодные для изготовления подслоя футеровки. Материал башен, орошаемых нитрозилсерной кислотой, эксплуатируется в более жестких условиях (76—80%-ная Н2504 и < 15% окислов азота в пересчете на НЫОз, температура 120—130°С), чем при производстве кислоты контактным способом. [c.132]

    Основ 1ЫМ сырьем в производстве серной кисло 1 ш служит сера лли серный колчедан, при сж11гакии которых получают сернксть ангидрид ЗОг. В зависимости от приемов переработки сернистого ангидрида различают два способа получения серной кислоты контактный и нктрозный (нитрозный способ называют также башенным). [c.71]

    Выделение селена в производстве серной кислоты нитрозным методом (стр. 315 сл.) производится по схеме, изображенной на рис. 6-24. Продукционная башенная кислота подается в приемный бак 2, откуда перекачивается в насадочную башню-реактор /, которая включена параллельно денитрационной и концентрационным башням (см. рис. 13-1, стр. 354). Через башню I проходит обжиговый газ, и орошающая насадку кислота насыщается сернистым ангидридом. По выходе из башни-реактора кислота поступает в промежуточный бак 3, куда вводится 25%-ный водный раствор хлорида натрия. Отсюда кислоту направляют в бак 4, где она отстаивается в течение 4 ч. При взаимодействии КаС1 с [c.182]


Смотреть страницы где упоминается термин Производство нитрозной башенной : [c.162]    [c.10]    [c.262]    [c.131]    [c.131]   
Технология серной кислоты (1985) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Нитрозный (башенный) способ производства и концентрирование серной кислоты

Нитрозный (башенный) способ производства серной кислоты

Производство нитрозной башенной Промывное отделение

Производство нитрозной башенной башни

Производство нитрозной башенной денитрация нитрозы

Производство нитрозной башенной интенсивность

Производство нитрозной башенной капитальные вложения

Производство нитрозной башенной кислотообразования механизм

Производство нитрозной башенной кислоты

Производство нитрозной башенной кислоты концентрация

Производство нитрозной башенной контроля параметры

Производство нитрозной башенной концентрированной

Производство нитрозной башенной кратность

Производство нитрозной башенной материальный баланс

Производство нитрозной башенной нитрозность кислоты

Производство нитрозной башенной орошение башен

Производство нитрозной башенной плотность

Производство нитрозной башенной поглощение оксидов азота

Производство нитрозной башенной работы режим

Производство нитрозной башенной расход азотной кислоты

Производство нитрозной башенной регулируемые параметры

Производство нитрозной башенной с кислородом

Производство нитрозной башенной схема

Производство нитрозной башенной тепловой баланс

Производство нитрозной башенной улавливание оксидов азота

Производство серной кислоты нитрозным методом Технологическая схема производства серной кислоты башенным способом

Производство серной кислоты нитрозным способом в башенных системах

Производство серной кислоты нитрозным способом в башенных системах Краткие исторические сведения

Технологическая схема производства серной кислоты башенным спосоФизико-химические основы нитрозного процесса



© 2024 chem21.info Реклама на сайте