Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Режим идеального вытеснения

    В первом приближении рассматривают режим идеального вытеснения. При идеальном вытеснении предполагается, что массо- и теплоперенос вдоль колонны осуществляются только усредненными конвективными потоками сплошной и дисперсной фаз концентрации и температуры по сечению колонны принимаются постоянными. [c.146]

    РЕЖИМ ИДЕАЛЬНОГО ВЫТЕСНЕНИЯ [c.218]

    Примером времени чистого запаздывания является режим идеального вытеснения в длинной трубе или холодильнике. Хотя это, по-видимому, и упрощенный взгляд на вещи, но истинное [c.126]


    Описанное поведение взаимодействующих фаз позволило Трей-балу [223] рекомендовать при расчете распылительных колонн Рес = 0 и Рбд=оо (режим идеального вытеснения). Как сообщают авторы [224], длина распылительной колонны не влияет на коэффициент продольного перемешивания, а при больших А , (Ад/р.с и малых Lk/-Ok сплошная фаза практически полностью перемешана [156]. В результате обработки опытных данных [204, 208, 209] для распылительных колонн диаметрами от 35 до 150 мм предложено [156] следующее выражение  [c.202]

    Перепадом давления в реакторе пренебрегаем. В этом случае принимается режим идеального вытеснения. [c.142]

    По мнению В. С. Бескова, В. П. Кузина и М. Г. Слинько [4,5], режим, близкий к идеальному вытеснению, наблюдается для многих промышленных реакторов. Условия, позволяюш,ие создать режим идеального вытеснения в проточном реакторе (числа Рейнольдса, соотношения диаметра и дливы реактора, соотношения диаметров реактора и зерна катализатора), описаны в монографии [6]. Теория изотермических проточных реакторов идеального вытеснения детально разработана в работах Г. М. Панченкова [7—8]. В трудах Г. М. Панченкова с сотрудниками [9—12] показано хорошее соответствие уравнений, выведенных на основе теоретических соображений, экспериментальным данным. Все это объясняет тот факт, что при изучении процессов нефтепереработки до настоян его времени используют главным образом интегральные проточные реакторы. [c.158]

    При разработке математического описания используют следующие основные допущения а) режим идеального перемешивания реакционной массы б) режим идеального перемешивания хладагента в рубашке в) режим идеального вытеснения теплоносителя в змеевике г) постоянство объема реакционной массы в реакторе д) постоянство расходов реакционной смеси, хладагента, теплоносителя. [c.66]

    В проточной части аппарата — режим идеального вытеснения Ре - 00, т. е. Д - 0. В этом случае [c.372]

Рис. 3.42. Характеристики результатов сложения взаимных колебаний Р и Q (режим идеального вытеснения) Рис. 3.42. <a href="/info/1484040">Характеристики результатов</a> сложения взаимных колебаний Р и Q (<a href="/info/363402">режим идеального</a> вытеснения)

    XIV-13. Применить данные предыдущей задачи для анализа реакции, протекающей по стехиометрическому уравнению Л- 2,5/ , принимая режим идеального вытеснения. [c.453]

    Режим идеального вытеснения характеризуется таким ламинарным течением потока реагентов, при котором любой элемент объема движется по высоте (длине) аппарата параллельно другим элементам, не смешиваясь с предыдущим и последующими элементарными объемами [3]. Время пребывания в реакторе т для всех молекул одинаково. Время пребывания любой молекулы т равно среднему Тср [c.44]

    В трубчатых гомогенных реакторах скорость потока, как правило, весьма велика и гидродинамические условия соответствуют области развитой турбулентности. Можно принять, что для этих условий характерен так называемый режим идеального вытеснения, или поршневой режим, который заключается в следующем  [c.35]

    Разберем теперь случай, когда эксперимент проводят в изотермическом интегральном реакторе Обычно считают, что внутри реактора устанавливается режим идеального вытеснения. При этом изменение концентраций по длине реактора описывается дифференциальными уравнениями. [c.85]

    Процесс гидрирования бензола в циклогексан можно проводить как в трубчатом реакторе с внешним теплообменом, так и в адиабатическом реакторе. В обоих случаях примем, что в реакторе устанавливается режим идеального вытеснения, а изменением концентраций и температур по радиусу аппарата можно пренебречь. При принятых предположениях, переходя от концентраций к степени превраш,е-ния по формуле (111,69) и воспользовавшись кинетическим уравнением (111,70), легко написать дифференциальные уравнения этого процесса [c.145]

    Реакции в потоке можно классифицировать по режимам проведения. Предельными являются режимы идеального вытеснения и идеального перемешивания. На практике могут реализоваться и промежуточные режимы. Режим идеального вытеснения, осуществляемый в трубчатых реакторах, характеризуется тем, что в потоке реагирующего газа отсутствует продольное и поперечное пере- [c.447]

    Вид функции g[t) можно приближенно определить с помощью графического дифференцирования переходной функции h t). При t j>Q функция g t) сначала монотонно растет и достигает в некоторой точке tm максимального значения. Затем при t > tm она монотонно убывает, стремясь при t- oo к нулевому значению. На рис. 5.3 изображены графики функций g t) при различных значениях Ре. В том случае, когда Ре- оо, т. е. гидродинамическая структура потоков в абсорбере близка к структуре, описываемой моделью идеального вытеснения, g t) имеет вид колоколообразной функции. При этом чем больше Ре, тем меньше интервал переменной t, на котором g(t) сильно отличается от нуля. В пределе, когда в аппарате имеет место режим идеального вытеснения, получаем g(t)— 8(r — t), где С — некоторый коэффицент. При Ре- 0 максимум функции g t) становится все менее острым, а точка tm, в котором он достигается, приближается к началу координат. В пределе, когда в аппарате реализован режим идеального вытеснения (Ре = 0), функция g(t) имеет максимум, равный 1/т при = 0, а при t > О экспоненциально убывает к нулю. [c.221]

    В случае последовательной схемы превращения селективность по промежуточному продукту всегда уменьшается с глубиной превращения (рис. 4.43) и потому Режим идеального вытеснения и более интенсивен, и более селективен. В этом режиме также больше максимальный выход промежуточного продукта. [c.180]

    Известно множество вариантов двухфазных моделей, отличающихся степенью идеализации реальной структуры слоя [19]. В простейшем случае они исходят из наличия в слое пузырей (дискретной или разреженной фазы) и плотной части слоя (плотной или непрерывной фазы), каждая из которых как бы представляет собой однофазный реактор. Согласно предложенным моделям, как правило, в пузырях химическая реакция не протекает, а состав реакционной смеси изменяется в результате газообмена с плотной частью слоя. В плотной части слоя принимается режим идеального вытеснения или полного перемешивания по газу. Ниже рассматриваются более подробно три двухфазные модели, которые наиболее существенно отличаются одна от другой принятыми допущениями. [c.271]

    Существенной особенностью аппаратов КС является значительное перемешивание адсорбента по высоте слоя, имеющей, как правило, величину порядка 60—100 мм, обеспечивающую удовлетворительное псевдоожижение. Для аппаратов не слишком значительного диаметра при интенсивном псевдоожижении часто принимается полное перемешивание адсорбента, что соответствует постоянному значению средней степени отработки адсорбента по всему объему слоя. По газовой фазе обычно принимается режим идеального вытеснения. [c.300]

    Реакции в потоке можно классифицировать по режимам проведения. Предельными режимами являются режим идеального вытеснения и режим идеального перемешивания. На практике могут существовать и промежуточные режимы. [c.342]


    Хорошо известно, что режим идеального вытеснения недостаточное условие для пол> чения достоверных данных. Весьма важно, чтобы реактор был изотермичен, так как отклонения от изотермичности могут привести к большему искажению данных по кинетике основных реакций, чем эффекты неоднородностей потока. Для обеспечения изотермичности слоя катализатора используют различные приемы. В частности, одним из эффективных приемов является помещение реактора с катализатором в псевдоожижений слой нагретого песка [30]. В бане с псевдоожиженным слоем теплоносителя устанавливается равномерный тепловой режим, соответственно и в реакторе или системе последовательно соединенных реакторов по всей высоте слоя обеспечивается изотермичность. Температура реактора зау меряется термопарой, прикрепленной к наружной стенке. Указанный способ подвода тепла имеет определенные трудности ввиду необходимости поддержания теплоносителя в псевдоожиженном состоянии длительное время. Однако он является наиболее рациональным, так как отпадает необходимость загрузки в реакторы инертной насадки для фиксации слоя катализатора в зоне равномерного температурного поля, как это делается обычно в реакторах с подводом тепла через стенку от электронагревательной спирали (см. рис. 3.15). В показанном на этом рисунке типе реактора изотермичность обеспечивается в ограниченной зоне ввиду больших теплопотерь через верхний и нижний фланцы. Реактор такого типа обычно используется при проведении экспериментов с большой глубиной превращения в длительных опытах. Недостатком такого типа реактора является ухудшение показателей по селективности катализатора из-за протекающих реакций термодеструк-цни в зоне инертной насадки над входной зоной катализатора. Этот реактор также может быть приспособлен для проведения опытов с малой степенью преврашения, т. е. при высоких значениях объемной скорости подачи сырья [35]. Суть такого приспособления заключается в том, что внутрь пустого реактора помещается [c.91]

    Таким образом, как и в случае массообмена, смешение конечных и исходных продуктов для большого числа химических реакций нежелательно, и оптимальным является режим идеального вытеснения. Следовательно, в рассматриваемых случаях целесообразно применять секционированные аппараты. При этом одновременно обеспечивается локальное перемешивание, благоприятствующее процессу, особенно когда его скорость лимитируется диффузионной стадией. Это положение, разумеется, не рашростра-няется на автокаталитические реакции, в которых целевые продукты являются инициаторами процесса. [c.245]

    Допустим, что а= 0,1, 1/ =1 и S = О (сопротивление переносу к твердым частицам отсутствует). Тогда должно быть Р < Ро = 0,05, чтобы можно было ориентироваться на режим идеального вытеснения в непрерывной фазе чтобы приемлемой аштроксимацией было полное перемешивание, необходимо условие Р Рд = 3. [c.406]

    Основные уравнения. Режим идеального вытеснения характеризуется пренебрежимо малой ролью диффузии и теплопроводности в продольном (т. е. параллельном движению реагирующей смеси) направлении. Соответственно, каждый элемент потока , проходя реактор, не взаимодействует со своими соседями, вошедшими в реактор раньше и позже него, и остается в аппарате, перемещаясь вдоль него со скоростью и, строго фиксированное время т = Lju, необходимое для прохождения длины реактора L. Если, кроме того, значение концентраций реагентов С[ и температуры Т постоянны по сечению аппарата, независимо от расстояния до его стенок, то стационарный режим реактора описывается при и — onst в квазигомо- [c.282]

    Средняя активность частиц катализатора в кипящем слое рассчитана в работах [36]. Расчет средней активности при различных функциях распределения времени пребывания настиц в слое (включая и режим идеального вытеснения, осуществляющийся в движущемся слое, — см. следующий раздел) проведен Петерсеном [37]. [c.315]

    XI1I-11. При взаимодействии бензола с хлором в действительности сначала образуется целевой продукт (монохлорбензол), который затем в присутствии хлора переходит в полихлорпроизводные. Для получения монохлорбензола с максимальным выходом предполагается оценить следующие спобобы проведения процесса хлорирования и выбрать из них наиболее подходящий режим идеального вытеснения с прямотоком и противотоком каскад проточных реакторов идеального смешения с прямотоком и противотоком периодический процесс процесс в проточном реакторе идеального смешения. [c.407]

    Представляется целесообразным использовать для расчета процесса окислительной регенерации диффузионную [168] или хшркуляционную [169] модель, т.е. те модели, которые с успехом применяют в настояшее время для описания продольного перемешивания частиц в псевдоожиженном слое. Рассмотрим в качестве примера двухфазную диффузионную модель, которая выводится из следующих основных допущений. Псевдоожиженный слой состоит из плотной фазы и фазы газовых пузырей, а плотная фаза является однородной взвесью катализатора и газообразных продуктов. В плотной фазе существует достаточно интенсивный продольный перенос тепла и вещества, для газовой фазы характерен режим идеального вытеснения. Химические реакции протекают только в плотной фазе, а перераспределение тепла и вещества в слое осуществляется за счет процессов тепломассообмена между плотной и газовой фазами. Тогда, принимая для простоты изотермичность зерна катализатора, получим следующее математическое описание  [c.91]

    Формулы (III.39)—(III.40) справедливы лишь для случая, когда потоки фаз равномерно распределены по поперечному сечению аппарата, перемешивание отсутствует и все частицы каждой фазы движутся с одинаковыми скоростями (режим идеального вытеснения). В реальных аппаратах режим движения фаз всегда отличается от идеального и движущая сила процесса зависит от перемешивания. Учет влияния перемешивания на изменение концентраций по высоте (длине) аппарата и соответственно на среднюю движущую силу процесса возможен, если экспериментально определены коэффициенты продольного перемешивания (см. стр. 159). Так как чаще всего экспериментальные данные по перемешиванию отсутствуют, то расчет средней движущей силы процесса массопередачи проводят по формулам (III.39)—(III.40), получая условные коэффициенты массопередачи — Ks и При этом не всегда имеет место пропорциональная зависимость между скоростью процесса и движущей силой, как это должно следовать из уравнения (1) — см. введение. Коэффициент массопередачи в таком случае зависит от концентрации поглощаемого или десорбируемого компонента и это создает дополнительные трудности при обобщении опытных данных и создании научно обоснованных методов расчета массообменных процессов. [c.142]

    Дополнительной особенностью алгоритма расчета рассмафиваемой задачи является неопределенность решения, так как скорость потока И зависит от диаметра реактора О, причем необходимо обеспечить режим идеального вытеснения в рассчитанном аппарате, который гарантируется при соблюдении следующих условий  [c.14]

    Примером развития идеи трубчатого реактора может служить способ и устройство для непрерывной суспензионной полимеризации по патенту ФРГ [190], протекающей не менее чем в двух реакционных зонах, в которых поддерживают режим идеального вытеснения поли-меризующейся суспензии. В первой реакционной зоне полимеризуют до 10% мономера. Удельная мощность, расходуемая на перемешивание, составляет 1-5 кВт/м Для предотвращения отложения полимера на стенках во второй зоне реакционная масса контактирует исключительно с гладкими, неметаллическими поверхностями. Процесс ведут в трех пространственно разделенных реакторах. Конверсия мономера на выходе из второго реактора составляет 25-50%, при выходе из третьего - 15-90%. Все реакторы имеют соотношение длины и диаметра не менее 4, причем ось первого реактора расположена перпендикулярно к горизонтали, а оси двух других реакторов выполнены с наклоном 0-20° к горизонтали. [c.16]

    Сопоставление адиабатического процесса в проточных режимах идеального смешения и вытеснения. Полагаем, что в режиме ИС реализуются все возможные степени превращения. Сравниваем интенсивности процессов в этих режимах, т. е. зависимости х-т при одинаковых параметрах и условиях процессов. Сначала рассмотрим экзотермический процесс. Соответствующие зависимости приведены на рис. 2.68. В режиме идеального смешения процесс протекает при конечных (температура и концентрация) условиях, а в режиме идеального вытеснения условия протекания процесса меняются от начальных до конечных. Поэтому в режиме ИВ средняя концентрация исходных веществ больше, а средняя температура - меньше. Температурное влияние на скорость превращения - положительное и более сильное, чем отрицательное влияние концентрации. Сравните пусть 7h = 500 К Л7ад = 200 град х = 0,5. Средние условия протекания процесса в режиме ИВ х 0,25 Т= Т + A7 х 550 К В режиме ИС х = 0,5 Т= 600 К. Скорость реакции, пропорциональная 1 - х в режиме ИВ будет в 1,5 раза выше, чем в режиме ИС. Но разница в температурах в 50 градусов дает выигрыш в скорости реакции для режима ИС примерно в 4 раза, что превышает концентрационные потери. Режим идеального смещения более интенсивен, чем режим идеального вытеснения -для достижения одинаковой степени превращения условное время процесса в реакторе ИС меньше. Только при достаточно больших степенях преврашения, когда влияние концентрационного фактора будет превалирующим, процесс в режиме ИС будет менее интенсивен. Это видно из рис. 2.68. В эндотермическом процессе режим ИВ всегда интенсивнее режима ИС. [c.142]


Смотреть страницы где упоминается термин Режим идеального вытеснения: [c.96]    [c.229]    [c.335]    [c.340]    [c.409]    [c.262]    [c.139]    [c.298]    [c.454]    [c.454]    [c.182]    [c.85]    [c.30]    [c.170]    [c.199]   
Смотреть главы в:

Гидродинамика массо- и теплообмен в колонных аппаратах -> Режим идеального вытеснения

Гидродинамика, массо и теплообмен в колонных аппаратах -> Режим идеального вытеснения


Химическая кинетика и катализ 1974 (1974) -- [ c.54 , c.55 , c.414 ]

Химическая кинетика и катализ 1985 (1985) -- [ c.44 , c.56 , c.431 ]

Инженерная химия гетерогенного катализа (1971) -- [ c.212 , c.213 ]




ПОИСК





Смотрите так же термины и статьи:

Вытеснение



© 2025 chem21.info Реклама на сайте