Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость конверсии мономера

    Пример 237. Для полимеризации 1000 г винилхлорида берут 200 мг ди-(2-этил-гексил)перкарбоната. Процесс проводят при 50 °С в течение 11 ч до степени конверсии мономера 91%. Среднечисловая степень полимеризации 1050. Вычислите среднюю длину кинетической цепи, если принять, что средняя эффективность инициирования равна 0,9, а 50% макрорадикалов обрывается за счет реакции диспропорционирования. Какова доля концевых групп поливинилхлорида, представляющих собой осколки инициатора Оцените значение относительной константы передачи цепи на мономер и сравните его с литературными данными. Принимается, что константа скорости распада инициатора (к, = 9- 10 с ) в ходе полимеризации не меняется. [c.82]


    Решение. В отсутствие ингибитора скорость полимеризации описывается уравнением (1.21). В начальный момент времени степень конверсии мономера х = О и [c.76]

    Каково приблизительное значение вязкости системы, в которой происходит радикальная полимеризация, если конверсия мономера составляет 40%, скорость полимеризации по сравнению с начальной увеличилась в 3,5 раза, а в начале полимеризации вязкость была 0,05 Па с. Допускается, что R и /Ср в ходе процесса не меняются. [c.92]

    Данные, характеризующие зависимость глубины и скорости конверсии мономеров от продолжительности полимеризации, в случаях применения выделенных из керосинового дистиллята меркаптанов и третичного додецилмеркаптана (ТДМ), приведены в табл. 1. Для кинетической об- [c.36]

    При этих допущениях на примере полимеризации стирола в эмульсии персульфатом калия выведено уравнение суммарной скорости полимеризации при невысокой конверсии мономеров [c.148]

    Кинетические исследования обычно проводят при низкой конверсии мономеров, чтобы избежать необходимости учета реакций разветвления полимеров. Принимается принцип квазистационар-ного состояния, при котором скорость образования начальных активных центров полимеризации равна скорости обрыва цепи путем рекомбинации. [c.151]

    Высшие меркаптаны жирного ряда по эффективности действия лишь немного уступают дипроксиду. В то же время они значительно медленнее расходуются в процессе полимеризации. Так, дипроксид практически полностью исчерпывается при 45% конверсии мономеров, высшие третичные меркаптаны еще остаются в системе и после 60% конверсии мономеров. Это обстоятельство определило порядок введения в реакционную смесь регуляторов в зависимости от их природы и скорости расхода. Дипроксид вводится дробно [c.246]

    На рис. 3 показано влияние содержания компонентов окислительно-восстановительной системы на скорость сополимеризации бутадиена со стиролом при 5°С [12]. Скорость сополимеризации определяется количеством сульфата железа (II), с увеличением содержания которого до 0,05 ч. (масс.) конверсия мономеров 60% может быть достигнута за 2 ч. Эквимолекулярное соотношение трилон Б — сульфат железа (II) является наиболее благоприятным для скорости полимеризации при содержании гидроперекиси около [c.250]

    При анионной полимеризации без обрыва цепи необходимо увеличить степень полимеризации в 2,5 раза за счет изменения концентрации инициатора и мономера. Как следует изменить концентрацию каждого из этих реагентов, чтобы при той же конверсии мономера скорость реакции не отличалась от первоначальной  [c.112]


    Рассчитайте начальную скорость гомофазной полимеризации винилового мономера и ожидаемую скорость полимеризации через 2, 5 и 10 ч, если исходные концентрации мономера и перекисного инициатора равны 0,8 и 0,001 моль х X л /Ср = 0,85 л (моль с) °/с = 5 10 с средняя эффективность инициирования 0,85. Оцените конверсии мономера и инициатора в указанные моменты времени. [c.89]

    При полимеризации 0,89 М водною раствора акриламида (50 °С) в присутствии 1,5 10 моль л персульфата калия через 45 мин от начала реакции степень конверсии. мономера достигает 67%, при этом скорость реакции умень-шается на 68%. В начальный момент величина (/Ср равна 4,68 (моль с) - и в течение реакции изменяется по линейному закону, концентрация инициатора практически неизменна, а к меняется следующим образом . [c.90]

    Температура и давление подбираются так, чтобы процесс осуществлялся в жидкой фазе, хотя из-за большого тепловыделения в момент введения катализатора неизбежно вскипание реакционной массы. Благодаря большим скоростям турбулентного потока сырья (0,5-20 м/с) достигается увеличение производительности реактора-трубы (около 100 кг/ч полимера с молекулярной массой 500-5 ООО против 1-3-кг/ч, согласно [12]), Полная конверсия мономера за 1-40 с пребывания сырья в реакторе подтверждает высокие скорости реакции полимеризации. [c.308]

    При анионной полимеризации без обрыва цепи необходимо увеличить скорость полимеризации на 25 % за счет изменения концентрации основных реагентов (инициатор, мономер). Вычислите соответствующие значения [I] и [М], если при той же степени конверсии мономера средняя молекулярная масса полимера М должна остаться постоянной. [c.112]

    По результатам табл. 1.2 для каждой концентрации инициатора строят график в координатах время полимеризации (в мин) — выход полимера (в %). Затем по конверсии мономера за определенный отрезок времени рассчитывают скорость полимеризации у [в моль/(л-с)] по формуле [c.16]

    В гетерогенной среде полимеризация может протекать в жидкой фазе, на поверхности и в объеме частиц твердой фазы полимера. Реакция протекает, по-видимому, одновременно в обеих фазах, но с различной скоростью. Соотношение скоростей этих реакций зависит от степени растворимости полимера в мономере или используемом растворителе, от степени конверсии мономера и соответственно соотношения жидкой и [c.116]

    В соответствии с кинетикой реакций радикальной полимеризации этилена основными технологическими параметрами синтеза ПЭВД, определяющими структуру и массу макромолекулы, являются температура и давление полимеризации. Важную роль играют также конверсия мономера и время пребывания реакционной смеси в реакторе. С повышением температуры скорость роста цепи увеличивается меньше, чем скорость реакций передачи цепи и распада инициатора, что приводит соответственно к увеличению степени разветвленности (того и другого типа) и уменьшению молекулярной массы. Повышение давления преимущественно увеличивает скорость роста цепи и замедляет распад инициатора. Это вызывает увеличение молекулярной массы и уменьшение степени разветвленности. В то время, как на КЦР влияют только температура и давление, ДЦР сильно зависит от концентрации и времени пребывания полимера в реакторе, а именно, увеличивается с ростом этих параметров. Повышение ДЦР, в свою очередь, приводит к увеличению фракций полимера большой молекулярной массы, т.е. к росту ширины ММР и образованию высокомолекулярного хвоста ММР. [c.136]

    Скорость подачи Температура, К Конверсия мономера, масс Уо Молекулярная масса (по Штаудингеру) [c.320]

    На стадии гель-эффекта, по мере накопления полимера в системе, увеличивается скорость реакции межмолекулярной передачи цепи с участием как первичных радикалов, так и макрорадикалов, что приводит к образованию ветвлений по ацетатным группам (см. рис. 1.1) и основной цепи ПВА. Поэтому ПВА, получаемый полимеризацией ВА до высокой конверсии мономера, имеет более широкое ММР. [c.17]

    Низкомолекулярный ПВА может быть получен полимеризацией ВА в метаноле при увеличении соотношения растворитель мономер и концентрации инициатора. Однако при значительном разбавлении ВА метанолом, несмотря на рост концентрации инициатора, значительно уменьшается скорость полимеризации и не достигается полная конверсия мономера. [c.20]

    В качестве инициаторов этой реакции используют соединения, генерирующие свободные радикалы. Присоединение свободного радикала к молекуле ненасыщенного мономера дает новый свободный радикал, который в свою очередь присоединяется к следующей молекуле мономера, образуя еще более крупный свободный радикал, и т. д. Обрыв цепи происходит при рекомбинации или диспропорционировании двух радикалов. В процесс цепной радикальной полимеризации входят реакции инициирования (схемы 1, 2), роста цепи (схемы 3, 4) и обрыва цепи (схема 5). Для реакций цепной полимеризации обычно характерны следующие особенности, отличающие их от процессов ступенчатой полимеризации (а) рост цепи происходит путем быстрого присоединения молекул мономера к небольшому числу активных центров (б) скорость полимеризации очень быстро достигает максимального значения и затем остается более или менее постоянной до тех пор, пока не будет израсходован весь инициатор (в) концентрация мономера равномерно у-меньшается (г) даже при низкой степени конверсии мономера в продуктах реакции содержатся полимеры с высокой молекулярной массой. [c.301]


    Таким образом, свободнорадикальная полимеризация — один нз видов цепных процессов сиЕП еза полимеров. Как сравнительно И )остой способ получения полиме[)ов, она широко применяется в промышленности. Поляризация исходных молекул мономера облегчает их реакции с радикалами инициатора при химическом инициировании или при физических методах генерации радикалов, причем электроноакцепторные заместители способствуют большей стабильности радикалов мономера и растущих цепей. Этот процесс можно регулировать различными приемами как по скорости конверсии мономера, так и по величине молекулярной массы полимера, Для этого используют добавки ннзкомолекулярных веществ, выполняющих функции ингибиторов или замедлителей реакции, а также осуществляющих передачу реакционной цепи или снижающих энергию активации распада инициаторов на радикалы, Зна- [c.34]

    Таким образом, скорость конверсии мономера (Vkohb) пропорциональна температуре и количеству [c.39]

    Для полимеризации, протекающей в реакторах с радиусом КЖкр, конверсия мономера в ходе реакции обычно не достигает 100%. Увеличение коэффициента турбулентной диффузии в несколько раз, в том числе и за счет увеличения скорости движения потоков, приводит к заметному росту глубины превращения мономера, несмотря на то, что при этом сокращается время пребывания сырья в зоне реакции (длина зоны реакции Ь постоянна) (рис. 3.16, крргвая 2). [c.153]

    Медведев с сотрудниками обратили внимание на изменение скорости полимеризации и числа полимер-мономерных частиц в зависимости от конверсии мономеров и отметили, что теория Смита — Эварта не учитывает влияния адсорбционных слоев эмульгатора на скорость протекания элементарных реакций полимеризации. Количество частиц с конверсией мономеров резко уменьшается, средний диаметр их пропорционален степени конверсии, в то время как общая поверхность частиц остается постоянной. По теории Медведева скорость полимеризации обусловлена большой скоростью образования свободных радикалов инициатора и снижением энергии активации распада инициатора полимеризации в слоях эмульгатора на поверхности раздела фаз. При изучении кинетики полимеризации показано, что скорость полимеризации линейно зависит от суммарной поверхности всех полимер-мономерных частиц. Это позволяет считать, что полимеризация протекает в адсорбционных слоях эмульгатора, в которых концентрация мономера и инициатора является наибольшей. Адсорбционные слои эмульгатора определяют не только устойчивость системы, но и скорость образования радикалов и место протекания полимеризации, [c.149]

    Сопоставление результатов исследований по катионной полимеризации изобутилена в присутствии галогенидов металлов и подобных каталитических систем показывает, что при низких температурах, особенно в неполярных растворителях, введение соини-циаторов оказывает существенное влияние на скорость реакции, конверсию мономера и молекулярную массу полученных поли--меров. [c.333]

    Качество получаемого каучука определяется в основном стадией полимеризации. В процессе полимеризации необходимо обеспечить постоянство молекулярной массы и высокую бифункциональность полимера. Первый показатель будет зависеть от постоянства отношения концентраций мономера и инициатора f/V/ Поскольку во время процесса полимеризации концентрации мономера и инициатора изменяются с разными скоростями, это отношение будет меняться в течение полимеризации, так как в большинстве случаев инициатор расходуется быстрее, чем мономер. Чем больше инициатора введено в начале процесса, тем меньше сократится значение М/УД при некоторой заданной конверсии мономера, и тем медленнее будет возрастать молекулярная масса полимера в течение процесса. С другой стороны, при малой [c.420]

    На рис. 3.5 показаны зависимости степени конверсии мономера г[= сд—с) сд от времени реакции при различных начальных размерах капель мономера или, иначе говоря, при различных значениях безразмерного параметра о= 1/ р ю характеризующего соотношение между скоростью транспорта молекул мономера к поверхности частицы и скорость химической реакции. С уменьшением размера капель мономера увеличивается параметр о, что влечет за собой увеличение скорости транспорта молекул мономера в водной фазе и повышение скорости полимеризации. Отсюда следует важный вывод скорость эмульсионной полиыери- [c.158]

    При более глубоких степенях превращения мономеров в полимер необходимо учитывать существенно изменяющиеся физико-химические условия реакционной среды. В процессе синтеза часто наблюдается при больших конверсиях мономеров аномальное [по сравнению с предсказываемой уравнениями (5.3) и (5.4)1 возрастание скорости полимеризации - явление, получившее название "гель-эффекта", "эффекта Тромодорфа". [c.231]

    Рассчитать константу скорости обрыва цепи ингибитором, если известно, что концентрация мономера - 5 моль/дм , концентрация инициатора - 3 10 моль/дм , эффективность инициатора /э = 0,38, константа скорости распада инициатора = = 0,4310 С , Кр = 660 дм (моль-с), К = 86,510 дм Дмоль х X с). Известно также, что степень конверсии мономера к моменту введения ингибитора составила 50%. [c.281]

    Полимеризация стирола (0,4 моль л ) проводится при 60 °С в растворе бензола в присутствии mpem-бутилмеркаптана (0,01 моль л ). Вычислите среднечисловую степень полимеризации в начале реакции и при конверсии мономера 5, 10 и 60%, если начальная скорость полимеризации 2- 10 моль х X л с обрыв протекает путем рекомбинации, относительные консТанты передачи цепи на мономер и меркаптан 0,9- 10 " и 3,7. Скорость инициирования в течение всей реакции постоянна и составляет 0,8510 ° моль л с . Передачей цепи на бензол пренебрегите. [c.91]

    Полярность же связи металл — углерод в металл-алкила находится в обратной зависимости, т. е. полярность связи —С минималь-на также вследствие наименьшего ионного радиуса Это способствует лучшей координации мономера у связи Ы—С в отличие от связей N3—С и К—С, где механизм полимеризации близок к чисто анионному (сильная локализация зарядов у ионов натрия и калия и на атоме углерода алкильного радикала). Полярные растворители способствуют разделению ионных пар и снижают коор-динируюидую способность связи Ь —С. В соответствии с изложенным, скорость полимеризации минимальна для литиевых производных катализаторов, но конверсия мономера при этом максимальна и приближается к 100%. [c.46]

    Таким образом, кинетические параметры быстрых процессов полимерр1за-ции к и линейная скорость потока реагентов определяют геометрические размеры (К, Ь) и конфигурацию реакционной зоны. При этом появляются новые возможности и методы управления процессом, позволяюш ие регулировать степень конверсии мономера и молекулярно-массовые характеристики образующихся полимерных продуктов, в частности, за счет принудительного изменения (ограничения) геометрических параметров зоны реакции (Я и Ь). [c.152]

    Если ограничить область реакции для всех значений скорости потока одним временем пребывания, например т=0,2 с (рис. 3.16, кривая 7), то при прочих равных условиях конверсия мономера в быстрых процессах полимеризации может возрастать более, чем в 3 раза, при увеличенрги скорости потока от 2,5 до 10 м/с. Одновременно, и это важно, с увеличением глубины превращения мономера (с ростом V, а следовательно, и Д) изменяются и молекулярно-мас-совые характеристики образующего продукта. Увеличение скорости движения потока приводит к росту среднечисленной ММ (Р ,), при этом одновременно сужается ММР продукта (рис. 3.17). На рис. 3.18 приведены изменения температуры по К для различных значений линейных скоростей движения потока реагентов (V) (коэффициента турбулентной диффузии Д). При увеличении V и соответственно росте Д, имеет место сглаживание температурных максимумов в реакционном объеме, несмотря на то, что общий выход полимера растет. Размывание температуры приводит к увеличению средних ММ и сужению ММР образующегося полимерного продукта. [c.153]

    Важной особенностью использования трубчатых турбулентных реакторов при реализации весьма быстрых процессов полимеризации является ограничение снизу количества подаваемого сырья. Трубчатый реактор работает неэффективно при малых нагрузках по сырью падает общая конверсия мономера, уширяется ММР, снижается ММ образующегося полимерного продукта, заметно уменьшается производительность реактора и др, (рис. 7.19). Это обусловлено тем, что при малых линейных скоростях движения сырья в трубчатом реакторе снижается и, как следствие, радиус К реактора становится выше В этом случае процесс из квазиизотермического режима (режима квазиидеального вытеснения в турбулентных потоках) переходит в факельный со всеми вытекающими отсюда негативными последствргями. Поскольку производительность трубчатого турбулентного реактора ограничена снизу, то пуск процесса при осуществлении быстрой полимеризации в производственных условиях необходимо проводить при рабочих расходах мономера и раствора катализатора, определяемых реальной производительностью установки. [c.313]

    Результаты кинетического исследования акцепторно-каталитической полиэтерификации дихлорангидрида терефталевой кислоты с фенолфталеином подтверждают этот вывод. После 50%-й конверсии мономеров наблюдается постоянство константы скорости поликонденсации. [c.55]

    Полимеризация ВА в массе (блочная) не имеет промышленного значения. Процесс протекает с очень высокими скоростями, и потому трудно регулируем. Ввиду низкой термостабильности ПВА ( 130°С) невозможно предотвратить нарастание вязкости реакционной смеси при высокой конверсии мономера увеличением температуры. Из-за плохого перемешивания высоковязкой массы и низкой- теплопроводности полимера теплообмен малоэффективен, в реакционной среде создаются зоны перегрева и, как следствие этого, получается ПВА нерегулярного строения с высокой полвдис-персностью (Ми,/.Мя 4 ч-5, где Ми, — среднемассовая, а М — среднечисленная ММ). Полимер содержит значительные количества сшитых фракций, образующихся в результате многократной передачи цепи на ПВА. Кроме того, высокая вязкость полимера [c.15]

    Скорость реакции обрыва цепи весьма чувствительна к вязкости среды, и диффузионный контроль этой реакции становится заметным при вязкости реакционной массы, близкой к вязкости мономера. Однако гель-э( )фект обычно наблюдается при конверсиях не менее 10—15% (в случае проведения полимеризации в массе). Как показывают расчеты [22, с. 71], отсутствие самоускорения при малых глубинах превращения в основном связано с заметным уменьшением скорости инициирования уже при небольшой конверсии мономера. Это вызвано снижением константы эффективности инициирования / вследствие рекомбинации первичных радикалов (клеточный эффект). Так как скорость полимеризации прямо пропорциональна Ьнп1к о, при одновременном уменьшении Уин и ко происходит компенсация и скорость реакции сохраняет примерно постоянное значение. При достижении конверсий, соответствующих началу самоускорения, уменьшение / замедляется, тогда как ко резко снижается. Это приводит к нарушению компенсации , и скорость полимеризации возрастает. [c.17]

    Адсорбционная насыщенность ПВАД, стабилизированных эмульгатором С40, приближается к 100% и не зависит от концентрации С-10 в пределах содержания его 4—10% от массы мономера. Диаметр частиц дисперсии уменьшается с увеличением отношения эмульгатор мономер (рис. 1.8) и не изменяется с начала полимеризации и до глубокой конверсии. Последнее обстоятельство, а также независимость скорости полимеризации ВА от концентрации мономера позволяет предполагать возможность протекания процесса от начала до конца в микроблоках, образующихся из микроэмульсии. ВА в растворе эмульгатора. Зарождение частиц в мономерной фазе при диаметре капель мономера менее 0,7—1,1 мкм отмечалось и при амульсионной полимеризации других мономеров в случае использования смеси ионогенных и неионогенных эмульгаторов [33, с. 72] Наличие гель-эффекта при эмульсионной полимеризации ВА в присутствии неионогенных ПАВ, определяемого по появлению разветвленности ПВА в области конверсии мономера 50—70%, не характерного для эмульсионной полимеризации ВА в присутствии волгоната, также подтверждает особенность механизма полимеризации ВА в растворах неионогенных эмульгаторов [34]. [c.28]

    Скорость ассоциации макромолекул ПВС в растворе зависит не только От концентрации, но и от факторов, приводящих к снижению кристалличности полимера. Методом двойного лучепреломления в потоке, являющимся весьма чувствительным и структурным изменениям в растворе, исследованы влияние ММ, содержания ацетатных групп и способа получения ПВС на процесс структурообразования в его водных растворах [112]. При хранении молекулярнодисперсные растворы ПВС становятся коллоидными системами, содержащими надмолекулярные частицы, имеющие форму сплюснутого эллипсоида [ИЗ]. Число этих частиц, зародышей кристаллической фазы, увеличивается со временем, однако рост их числа замедляется с увеличением как молекулярной массы ПВС (вследствие меньшей подвижности макромолекул), так и содержания в нем ацетатных групп. В водных рас-тво )ах ПВС, полученных из ПВА с неполной конверсией мономера, процесс структурообразования протекает значительно слабее, чем в растворах ПВС, полученных иа ПВА с-полной конверсией. Стабильность растворов ПВС улучшается также при повышении температуры полимеризаций исходного ВА, что может быть объяснено увеличением содержания 1,2-гликолевых структур и коротких ветвлений. [c.112]


Смотреть страницы где упоминается термин Скорость конверсии мономера: [c.84]    [c.36]    [c.28]    [c.249]    [c.112]    [c.560]    [c.55]    [c.147]    [c.105]    [c.54]   
Технология синтетических пластических масс (1954) -- [ c.39 ]




ПОИСК







© 2025 chem21.info Реклама на сайте