Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поливинилхлорид способность к кристаллизации

    Полиакрилонитрил — частично кристаллический полимер, что приводит к предположению о высокой степени его стереорегулярности. Действительно, это утверждалось в ряде работ на основании анализа ИК-спектров [20, 21], хотя другие исследования методом ИК-спектроскопии [22] привели к выводу, что полиакрилонитрил имеет почти нерегулярное строение (в согласии с данными ЯМР —см. разд. 4.4). Различия в способности к кристаллизации [23, 24] и размерах цепи в растворе [25] в зависимости от температуры полимеризации заставили высказать предположение о большей синдиотактической регулярности полимеров, полученных при низких температурах. Этот вывод аналогичен рассмотренному в предыдущем разделе для поливинилхлорида, но еще менее обоснован экспериментально. Спектры р-метиленовых протонов поли- [c.162]


    Как уже отмечалось, неограниченная взаимная растворимость полимеров — очень редкое явление. В определенных условиях она достигается, напр, при смешении поливинилхлорида и бутадиен-нитрильного каучука (СКН-40), поливинилацетата и нитроцеллюлозы. Менее всего способны образовать однофазную смесь кристаллич. полимеры при темп-ре ниже темп-ры плавления существование такой смеси означало бы совместную кристаллизацию различных макромолекул, изоморфизм же в кристаллич. полимерах наблюдается крайне редко. [c.217]

    Вязкость однофазных растворов полимеров, в которых происходит незначительная кристаллизация полимера, может возрастать, и такие растворы иногда способны образовывать упругие гели без отделения растворителя. Образование геля в этом. случае обусловлено не сшиванием макромолекул химическими поперечными связями, а кристаллизацией, протекающей в небольшом масштабе. При четко экспериментально определяемой "температуре плавления геля" раствор вновь начинает течь. К таким системам относятся раствор поливинилхлорида в диоктилфталате, растворы полиакрилонитрила и полиметилметакри-лата в диметилформамиде, раствор нитроцеллюлозы в этиловом спирте, а также растворы метилцеллюлозы, желатины,агар-агара и поливинилового спирта в воде. Вопрос о том, являются ли гели однофазными и двухфазными системами, был рассмотрен Паулом [ 178], но автор не пришел к однозначному выводу.  [c.328]

    Карбоцепные полимеры часто содержат боковые цепи в виде алкильных радикалов разной длины. Чем больше регулярность строения, тем в большей степени проявляется способность полимера к кристаллизации и соответственно выше прочность волокон. К полимерам регулярного строения относятся полипропилен, поливинилхлорид, поливиниловый спирт, с увеличением степени разветвленности и нарушением регулярности строения цепи увеличиваются эластические свойства полимеров, например полимерных парафинов (полипропилены, полибутены и [c.354]

    Известно, что для аморфных, т. е. не способных к кристаллизации, полимеров, обладающих линейным строением своих молекул-цепей, к группе которых относится и поливинилхлорид, характерны три физических состояния, задаваемых тепловым воздействием [17]. [c.126]

    Высокая степень кристалличности не является обязательным условием, обеспечивающим способность полимера к волокнообразованию, так как, например, поливинилхлорид и полиакрилонитрил, из которых получаются ценные волокна, плохо кристаллизуются с другой стороны, некоторые из наиболее ценных синтетических волокон, например полиамидные волокна и полиэфирное волокно терилен, обладают высокой степенью кристалличности. Вполне вероятно, что способность к кристаллизации является ценным свойством, и волокна из поливинилхлорида и полиакрилонитрила были бы лучше. [c.215]


    Когда происходит гелеобразование, разбавленный или более вязкий раствор полимера переходит в систему бесконечной вязкости, т. е. в гель. Гель может рассматриваться как высокоэластическое, каучукоподобное твердое тело. Раствор, образующий гель, не течет при переворачивании пробирки с ним. Гелеобразование фактически не является процессом фазового разделения и может иметь место и в гомогенных системах, содержащих полимер и растворитель. Многие полимеры, используемые как мембранные материалы, проявляют гелеобразующие свойства, например, ацетат целлюлозы, полифениленоксид, полиакрилонитрил, полиметилметакрилат, поливинилхлорид и поливиниловый спирт. Физическое гелеобразование может протекать по различным механизмам в зависимости от типа полимера и используемого растворителя или смеси растворитель/нерастворитель. Особенно в случае частично-кристаллических полимеров гелеобразование часто инициируется образованием микрокристаллитов. Эти микрокристаллиты, являющиеся малыми упорядоченными областями, фактически становятся зародышами процесса кристаллизации, но они не способны к дальнейшему росту. Однако если эти микрокристаллы могут связать вместе различные цепи полимера, то будет образовываться трехмерная сетка. Благодаря их кристаллической природе эти гели являются термотропными, т. е. при нагревании кристаллы плавятся и раствор может течь. При охлаждении раствор снова превращается в гель. В процессе гелеобразования часто формируются надмолекулярные структуры (например, спирали). Гелеобразование может также происходить по другому механизму, например при добавлении комплексообразующих ионов (Сг ) или с помощью водородных связей. [c.124]

    Карбоцепные полимеры часто содержат боковые цепи в виде алкильных радикалов разной длины. Чем больше регулярность строения, тем выше способность полимера к кристаллизации и соответственно выше прочность волокон. К таким полимерам относятся регулярные полипропилен, поливинилхлорид, поливиниловый сп[[рт. С увеличением разветвленности и нарушенпем регулярности увеличиваются эластические свойства полимеров, например, полимерных парафинов (полипропилены, полибутены и т. д.). В качестве боковых групп в углеродной основной цепи могут быть не только углеводородные радикалы, но и многие функциональные группы, придающие полимерам разнообразные свойства. Их вводят с мономером нри синтезе полимеров или с помощью реакций замещения в готовых полимерах. [c.308]

    Регулярность структуры. Кристаллизоваться могут только такие полимеры, молекулы которых построены регулярно. Б гомополимерах может возникнуть нерегулярность за счет разного пространственного расположения заместителей. Поэтому к кристаллизации способны только стереорегулярные полимеры. Чем больше нарушений регулярности в полимере, тем меньше содержание его кристаллической части. В таких промышленных полимерах, как полистирол или полиметилметакрилат, заместители расположены нерегулярно, эти полимеры аморфны и не содержат кристаллической части. Поливинилхлорид содержит сильно полярные атомы хлора, которые взаимно отталкиваются и поэтому значительная часть макромолекул поливинилхлорида построена относительно регулярно даже при получении полимера методом эмульсионноГ полимеризации. Поэтому поливинилхлорид частично кристаллизуется. В полиэтилене нет заместителей, поэтому полиэтилен мог Оы быть идеально кристаллическим. Однако в условиях синтеза в макромолекулах его возникают разветвления, которые нарушают регулярность, и это приводит к снижению степени кpи тaJrличнo ти в тем большей степени, чем больше разветвлений. Так, полиэтилен, полученный путем разложения диазометапа (так называемый полиметилен), является полностью линейным. Степень кристалличности достигает в нем 95%. Полиэтилен высокой плотности, полученный на катализаторах Циглера — Натта, разветвлен в большей степе- [c.182]

    Разновидностью С. первого типа являются системы, в к-рых устойчивые контакты между макромолекулами обеспечиваются локальной кристаллизацией группы цепей. Отрезки макромолекул между кристаллич. узламй способны к таким же конформац. превращениям под действием внеш. мех. нагрузок, как и химически сшитые полимеры, но верх, предел области обратимой деформации ограничивается т-рой плавления кристаллич. узлов. Выше этой т-ры С. превращ. в обычный р-р полимера. Примером С. этого типа могут служить р-ры поливинилхлорида с невысокой степенью кристалличности, обусловленной низкой синдиотактичностью макромолекул (см. Стереорегулярные полимеры). Локальная кристаллизация в этом случае ответственна за обратимую деформацию высокопластифицир. изделий из поливинилхлорида. Аналогичные С. часто образуются из р-ров сополимеров, у к-рых в результате неоднородного распределения сомономеров в цепи возникает возможность 887 [c.448]

    Нет, однако, сомнений в том, что поливинилхлорид, полученный при низкой температуре, отличается по своим физическим свойствам, в особенности по кристаллизуемости, от полимера, синтезированного при комнатной температуре [8, 14]. Таламини и Видотто [15] высказали предположение, что кристаллиты могут быть образованы г-блоками из четырех или пяти звеньев, но в структуре, описываемой статистикой Бернулли с / 0,4, в такие блоки входит не больше 0,1—0,2 мономерных звеньев. Сейчас имеется достаточно доказательств, что цепи винильных полимеров могут кристаллизоваться несмотря на высокую степень конфигурационной нерегулярности. Вероятно, повышенная способность к кристаллизации обусловлена, главным образом, уменьшением числа разветвлений в полимерах, приготовленных при низких температурах [13, 14, 16—18], а не относительно небольшим увеличением доли синдиотактических последовательностей (например, Рт составляет 0,46 и 0,37 для полимеров, полученных соответственно [c.162]


    По-видимому, многие обычные полимеры винилового ряда, такие, как полистирол, поливинилацетат, нолиметилметакрилат и т. п., имеют заместители, расположенные по такому же закону, вследствие чего нерегулярность их строения настолько затрудняет вхождение заместителей в кристаллическую решетку, что эти вещества обычно существуют в аморфном или стеклообразном состоянии. Это, очевидно, справедливо в случае, если группы довольно велики и неполярны, например—С Н ,—ОСОСН3, —СООСНз или —-ОС4Н9. Если заместители малы по размерам и представляют собой полярные группы —ОН, —С1, — N или —Р, то, по-видимому, параллельно расположенные длинные цепи, даже если заместители в них расположены случайным образом относительно с1- и /-конфигураций, способны к упорядочению с образованием кристаллорешетчатой структуры. Эти случаи были рассмотрены Банном [И] для поливинилового спирта и Натта [12] для поливинилхлорида, и очень возможно, что такое положение имеет место и для поливинилфторида, и полиакрилонитрила, которые обладают заметной, хотя и ограниченной тенденцией к кристаллизации. [c.60]

    Для характеристики полимеров используют понятие степени кристалличности, или коэфф. кристалличности. Степень кристалличности показывает, какая часть полимера закристаллизована и входит в состав кристаллич. областей. Значение этой величины в зависимости от условий кристаллизации и способа обработки для большинства полимеров колеблется от 20 до 80%. Встречаются случаи, когда степень кристалличности меньше 20% (поливинилхлорид, пек-рые каучуки) и больше 80% (кристаллы полиэтилена). Она снижается при уменьшении регулярности цепи, напр, степень кристалличности полиэтилена низкой плотности меньше, чем полиэтилена высокой плотности. Наличие в структуре полимеров кристаллических и аморфных областей является причиной их основных специфич. свойств. Наряду с большой прочностью, к-рой характеризуются все кристаллич. тела, кристаллические полимеры при определенных темп-рных условиях обладают способностью к сравнительно большим обратимьш деформациям благодаря существованию в их структуре аморфных участков. Плавление кристаллич. полимеров, в отличие от низкомолекулярпых веществ, происходит в большом темп-рном интервале. [c.590]

    Полимер кристаллизуется вместе с растворителем, образуя новую решетку, не типичную как для чистого полимера, так и для растворителя (например, кристаллизация поливинилхлорида при пластификации его 40% диоктилфталата). При этом возникают структуры типа кристаллосольватов. Но более явно кристаллосольваты образуются в системах, вообще не способных кристаллизоваться в отсутствие растворителя. Это явление впервые наблюдалось для по-лиокхаметилендибензимидазола (ПОМБИ) дающего картины трехмерной рентгеновской дифракции только в присутствии муравьиной кислоты удаление ее приводит к аморфизации. При добавлении к ПОМБИ уксусной кислоты получается другая кристаллическая решетка, что служит доказательством образования в некотором роде стереокомплексов полимера с растворителем. [c.129]

    В таблице 1.1 приведены данные па некоторым особенностям получения и свойствам волокон на основе хлорсодержащих полимеров. Поливинилиденхлорид и теплостойкий поливинилхлорид, содержащий значительное количество синдиотактических звеньев, обладая способностью к кристаллизации, позволяют достигнуть большей ориентации при вытягивании и получить волокна с большей прочностью и таплостойкостью [25]. [c.21]

    Другим примером, иллюстрирующим значение разницы в величине двух заместителей у одного углеродного атома цепи, являются свойства поливинилхлорида и его фторзамещенного аналога—политрифторхлорэтилена. Поливинилхлорид очень плохо кристаллизуется, но и незначительная его способность к кристаллизации обусловлена, вероятно, тем, что он обладает не совсем нерегулярным стереохимическим строением на небольших расстояниях вдоль цепи атомы хлора занимают попеременно левое и правое положения. Если бы поливинилхлорид имел полностью нерегулярное строение, он бы не кристаллизовался вообще (как и сильно хлорированный полиэтилен). Однако политрифторхлорэтилен очень хорошо кристаллизуется неизвестно, имеют ли его молекулы правильное стереохимическое строение, но даже если и нет, то между объемами атомов хлора и фтора разница значительно меньше (радиусы 1,35 и 1,70 А), чем между атомами водорода и хлора (радиусы 1,1 и 1,70 А), так что даже стереохимически неправильные молекулы в этом случае должны быть способны к кристаллизации. [c.218]


Смотреть страницы где упоминается термин Поливинилхлорид способность к кристаллизации: [c.163]    [c.175]    [c.447]    [c.60]    [c.163]   
Основы химии высокомолекулярных соединений (1961) -- [ c.295 ]




ПОИСК





Смотрите так же термины и статьи:

Поливинилхлорид

Способность к кристаллизации



© 2025 chem21.info Реклама на сайте